References
- Alpatov, V. (1948). Porody medonosnoi pchely. Moskovskoje Obscestvo Ispytatielej Prirody.
- Ángel-Beamonte, E., Martín-Ramos, P., Santolaria, P., Sales, E., Abizanda, J., Yániz, J. L. (2018). Automatic determination of landmark coordinates for honey bee forewing venation using a new MATLAB-based tool. Journal of Apicultural Research, 57(5), 605–610. https://doi.org/10.1080/00218839.2018.1501856
- Barour, C., & Baylac, M. (2016). Geometric morphometric discrimination of the three African honeybee subspecies Apis mellifera intermissa, A. m. sahariensis and A. m. capensis (Hymenoptera, Apidae): Fore wing and hind wing landmark configurations. Journal of Hymenoptera Research, 52, 61–70. https://doi.org/10.3897/jhr.52.8787
- Belaïd, M. (2010). Effet du Varroa destructor sur la morphometrie alaire et sur les composants du systeme immunitaire de l’abeille ouvriere Apis mellifera intermissa. Lebanese Science Journal, 11(1), 8.
- Bookstein, F. L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press.
- Bustamante, T., Baiser, B., Ellis, J. D. (2020). Comparing classical and geometric morphometric methods to discriminate between the South African honey bee subspecies Apis mellifera scutellata and Apis mellifera capensis (Hymenoptera: Apidae). Apidologie, 51(1), 123–136. https://doi.org/10.1007/s13592-019-00651-6
- Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis (Vol. 4). J. Wiley Chichester. https://pdfs.semanticscholar.org/6ba2/73a7cfa282f73423110d00a5d20ad36766e1.pdf
- Dukku, U. H., & Danailu, G. (2020). An appraisal of subspecific classification of Apis mellifera L. in parts of West and Central Africa through landmark-based geometric morphometric analysis of forewings. Journal of Apicultural Research, 59(4), 722–729. https://doi.org/10.1080/00218839.2019.1696009
- DuPraw, E. J. (1965). The recognition and handling of honeybee specimens in non-Linnean taxonomy. Journal of Apicultural Research, 4(2), 71–84.
- Francoy, T. M., Wittmann, D., Drauschke, M., Müller, S., Steinhage, V., Bezerra-Laure, M. A., De Jong, D., Gonçalves, L. S. (2008). Identification of Africanized honey bees through wing morphometrics: Two fast and efficient procedures. Apidologie, 39(5), 488–494. https://doi.org/10.1051/apido:2008028
- Gerula, D., Tofilski, A., Węgrzynowicz, P., Skowronek, W. (2009). Computer-assisted discrimination of honey bee subspecies used for breeding in Poland. Journal of Apicultural Science, 53(2), 105–114.
- Goetze, G. (1959). Die Bedeutung des Flügelgeaders für züchterische Beuerteilung der Honigbiene. Zeitschrift Für Bienenforschung, 4, 141–148.
- Gromisz, M. (1962). Seasonal variation of wing measurements and cubital index in honeybees [in Polish]. Pszczelnicze Zeszyty Naukowe, 6(3), 113–120.
- Kandemir, İ., Özkan, A., Fuchs, S. (2011). Reevaluation of honeybee (Apis mellifera) microtaxonomy: A geometric morphometric approach. Apidologie, 42(5), 618–627. DOI: 10.1007/s13592-011-0063-3
- Klingenberg, C. P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11(2), 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
- Łopuch, S., & Tofilski, A. (2016). The relationship between asymmetry, size and unusual venation in honey bees (Apis mellifera). Bulletin of Entomological Research, 106(3), 304–313. https://doi.org/10.1017/S0007485315000784
- Mattu, V. K., & Verma, L. R. (1984). Morphometric studies on the indian honeybee, Apis cerana indica F. Effect of seasonal variations. Apidologie, 15(1), 63–73. https://doi.org/10.1051/apido:19840106
- McMullan, J. B., & Brown, M. J. (2006). The influence of small-cell brood combs on the morphometry of honeybees (Apis mellifera). Apidologie, 37(6), 665–672. https://doi.org/10.1051/apido:2006041
- Meled, M., Thrasyvoulou, A., Belzunces, L. P. (1998). Seasonal variations in susceptibility of Apis mellifera to the synergistic action of prochloraz and deltamethrin. Environmental Toxicology and Chemistry, 17(12), 2517–2520. https://doi.org/10.1002/etc.5620171220
- Nawrocka, A., Kandemir, İ., Fuchs, S., Tofilski, A. (2017). Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie, 49(2), 172–184. https://doi.org/10.1007/s13592-017-0538-y
- Nazzi, F. (1992). Fluctuation of forewing characters in hybrid honey bees from northeastern Italy. Journal of Apicultural Research, 31(1), 27–31. https://doi.org/10.1080/00218839.1992.11101257
- Nürnberger, F., Härtel, S., Steffan-Dewenter, I. (2019). Seasonal timing in honey bee colonies: Phenology shifts affect honey stores and varroa infestation levels. Oecologia, 189(4), 1121–1131. https://doi.org/10.1007/s00442-019-04377-1
- Rafie, J. N., Mohamadi, R., Teimory, H. (2014). Comparison of two morphometrics methods for discriminating of honey bee (Apis mellifera meda Sk.) populations in Iran. International Journal of Zoology and Research, 4(3), 61–70.
- Ray, S., & Ferneyhough, B. (1997). Seasonal variation of proboscis extension reflex conditioning in the honey bee (Apis mellifera). Journal of Apicultural Research, 36(2), 108–110. https://doi.org/10.1080/00218839.1997.11100936
- Schneider, S. S., Leamy, L. J., Lewis, L. A., DeGrandi Hoffman, G. (2003). The influence of hybridization between African and European honeybees, Apis mellifera, on asymmetries in wing size and shape. Evolution, 57(10), 2350–2364. https://doi.org/10.1111/j.0014-3820.2003.tb00247.x
- Smith, D. R., Crespi, B. J., Bookstein, F. L. (1997). Fluctuating asymmetry in the honey bee, Apis mellifera: Effects of ploidy and hybridization. Journal of Evolutionary Biology, 10(4), 551–574. https://doi.org/10.1046/j.1420-9101.1997.10040551.x
- Szentgyörgyi, H., Czekońska, K., Tofilski, A. (2016). Influence of pollen deprivation on the fore wing asymmetry of honeybee workers and drones. Apidologie, 47(5), 653–662. https://doi.org/10.1007/s13592-015-0415-5
- Tentcheva, D., Gauthier, L., Zappulla, N., Dainat, B., Cousserans, F., Colin, M. E., Bergoin, M. (2004). Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Applied and Environmental Microbiology, 70(12), 7185–7191. https://doi.org/10.1128/AEM.70.12.7185-7191.2004
- Tofilski, A. (2008). Using geometric morphometrics and standard morphometry to discriminate three honeybee subspecies. Apidologie, 39(5), 558–563. https://doi.org/10.1051/apido:2008037
- Węgrzynowicz, P., Gerula, D., Tofilski, A., Panasiuk, B., Bieńkowska, M. (2019). Maternal inheritance in hybrids of three honey bee subspecies. Journal of Apicultural Science, 63(1), 131–138. https://doi.org/10.2478/jas-2019-0010
- Zhu, X., Xu, X., Zhou, S., Wang, Q., Chen, L., Hao, Z., Zhou, B. (2018). Low temperature exposure (20°C) during the sealed brood stage induces abnormal venation of honey bee wings. Journal of Apicultural Research, 57(3), 458–465. https://doi.org/10.1080/00218839.2017.1412575