References
- Araújo, J.S., Chambó, E.D., de Carvalho Costa, M.A.P., da Silva, S.M.P.C., de Carvalho C.A.L., Estevinho, L.M. (2017). Chemical composition and biological activities of mono- and heterofloral bee pollen of different geographical origins. International Journal of Molecular Sciences, 18(5), 921. DOI: 10.3390/ijms18050921
- Bernard, P., & Berthon, J. (2000). Resveratrol: an original mechanism on tyrosinase inhibition. International Journal of Cosmetic Science, 22(3), 219–226. DOI: 10.1046/j.1467-2494.2000.00019.x
- Caccavari, M.A. (2002). Pollen morphology and structure of Tropical and Subtropical American genera of the Piptadenia-group (Leguminosae: Mimosoideae). Grana, 41(3), 130–141. https://doi.org/10.1080/001731302321042597
- Chang, T.S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10(6), 2440–2475. https://doi.org/10.3390/ijms10062440
- Chantarudee, A., Phuwapraisirisan, P., Kimura, K., Okuyama, M., Mori, H., Kimura, A., Chanchao, C. (2012). Chemical constituents and free radical scavenging activity of corn pollen collected from Apis mellifera hives compared to floral corn pollen at Nan, Thailand. BMC Complementary and Alternative Medicine, 12, 45. DOI: 10.1186/1472-6882-12-45
- Choi, C.W., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn, H.J., Lee, M.Y., … Kim, S.S. (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 163(6), 1161–1168. https://doi.org/10.1016/S0168-9452(02)00332-1
- de Arruda, V.A.S., Pereira, A.A.S., de Freitas, A.S., Barth, O.M., de Almeida-Muradian, L.B. (2013). Dried bee pollen: B complex vitamins, physicochemical and botanical composition. Journal of Food Composition and Analysis, 29(2), 100–105. https://doi.org/10.1016/j.jfca.2012.11.004
- Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture, 96(13), 4303–4309. DOI: 10.1002/jsfa.7729
- Donkersley, P., Rhodes, G., Pickup, R.W., Jones, K.C., Power, E.F., Wright, G.A., Wilson, K. (2017). Nutritional composition of honey bee food stores vary with floral composition. Oecologia, 185(4), 749–761. DOI: 10.1007/s00442-017-3968-3
- Ebanks, J.P., Wickett, R.R., Boissy, R.E. (2009). Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. International Journal of Molecular Sciences, 10(9), 4066–4087. DOI: 10.3390/ijms10094066
- El Ghazali G.E.B., Satti, A.M., Tsuji, S.-I. (1997). Intraspecific pollen polymorphism in Mimosa pigra (Mimosaceae). Grana, 36(5), 279–283. DOI: 10.1080/00173139709362617
- Fan, M., Zhang, G., Hu, X., Xu, X., Gong, D. (2017). Quercetin as a tyrosinase inhibitor: inhibitory activity, conformational change and mechanism. Food Research International, 100, 226–233. DOI: 10.1016/j.foodres.2017.07.010
- Fatrcová-Šramková, K., Nôžková, J., Máriássyová, M., Kačániová, M. (2016). Biologically active antimicrobial and antioxidant substances in the Helianthus annuus L. bee pollen. Journal of Environmental Science and Health, Part B, 51(3), 176–181. DOI: 10.1080/03601234.2015.1108811
- Guzel, A., Aksit, H., Elmastas, M., Erenler, R. (2017). Bioassay-guided isolation and identification of antioxidant flavonoids from Cyclotrichium origanifolium (Labill.) Manden and Scheng. Pharmacognosy Magazine, 13(50), 316–320. DOI: 10.4103/0973-1296.204556
- Kast, C., Kilchenmann, V., Reinhard, H., Droz, B., Lucchetti, M.A., Dübecke, A., … Zoller, O. (2018). Chemical fingerprinting identifies Echium vulgare Eupatorium, Cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen. Food Additives and Contaminants: Part A, 35(2), 316–327. DOI: 10.1080/19440049.2017.1378443
- LeBlanc, B.W., Davis, O.K., Boue, S., DeLucca, A., Deeby, T. (2009). Antioxidant activity of Sonoran Desert bee pollen. Food Chemistry, 115(4), 1299–1305. https://doi.org/10.1016/j.foodchem.2009.01.055
- Li, Q., Liang, X., Zhao, L., Zhang, Z., Xue, X., Wang, K., Wu, L. (2017). UPLC-Q-exactive orbitrap/MS-based lipidomics approach to characterize lipid extracts from bee pollen and their in vitro anti-inflammatory properties. Journal of Agricultural and Food Chemistry, 65(32), 6848–6860. DOI: 10.1021/acs.jafc.7b02285
- Lobo, V., Patil, A., Phatak, A., Chandra, N. (2010). Free radicals, antioxidants and functional foods: impact on human health. Pharmacognosy Reviews, 4(8), 118–126. DOI: 10.4103/0973-7847.70902
- Lv, H., Wang, X., He, Y., Wang H., Suo, Y. (2015). Identification and quantification of flavonoid aglycones in rape bee pollen from Qinghai-Tibetan Plateau by HPLC-DAD-APCI/MS. Journal of Food Composition and Analysis, 38, 49–54. https://doi.org/10.1016/j.jfca.2014.10.011
- Morgano, M.A., Martins, M.C.T., Rabonato, L.C., Milani, R.F., Yotsuyanagi, K., Rodriguez-Amaya, D.B. (2012). A comprehensive investigation of the mineral composition of Brazilian bee pollen: geographic and seasonal variations and contribution to human diet. Journal of the Brazilian Chemical Society, 23(4), 727–736. http://dx.doi.org/10.1590/S0103-50532012000400019
- Nagai, T., Inoue, R., Suzuki, N., Tanoue, Y., Kai, N., Nagashima, T. (2007). Antihypertensive activities of enzymatic hydrolysates from honeybee-collected pollen of Cistus ladaniferus. Journal of Food, Agriculture and Environment, 5(3–4), 86–89. https://doi.org/10.1234/4.2007.1044
- Negrão, A.F., & Orsi, R.O. (2018). Harvesting season and botanical origin interferes in production and nutritional composition of bee pollen. Annals of the Brazilian Academy of Sciences, 90(1), 325–332. DOI: 10.1590/0001-3765201720150192
- Nna, V.U., Abu Bakar, A.B., Md Lazin, M.R.M.L., Mohamed, M. (2018). Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 120, 305–320. DOI: 10.1016/j.fct.2018.07.028
- Pascoal, A., Rodrigues, S., Teixeira, A., Feás, X., Estevinho, L.M. (2014). Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food and Chemical Toxicology, 63, 233–239. DOI: 10.1016/j.fct.2013.11.010
- Pillaiyar, T., Manickam, M., Namasivayam, V. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403–425. DOI: 10.1080/14756366.2016.1256882
- Rao, V., Kiran, S.D.V.S., Rohini, P., Bhagyasree, P. (2017). Flavonoid: a review on naringenin. Journal of Pharmacognosy Phytochemistry, 6(5), 2778–2783.
- Sun, L., Guo, Y., Zhang, Y., Zhuang, Y. (2017). Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Frontiers in Pharmacology, 8, 104. DOI: 10.3389/fphar.2017.00104
- Uivarosi, V., Badea, M., Olar, R., Velescu, B. (2016). Synthesis and characterization of a new complex of oxovanadium (IV) with naringenin, as potential insulinomimetic agent. Farmacia, 64(2), 175–180.
- Wang, Z., Kanda, S., Shimono, T., Enkh-Undraa, D., Nishiyama, T. (2018). The in vitro estrogenic activity of the crude drugs found in Japanese herbal medicines prescribed for menopausal syndrome was enhanced by combining them. BMC Complementary and Alternative Medicine, 18(1), 107. DOI: 10.1186/s12906-018-2170-4
- Wu, Y.D., & Lou, Y.J. (2007). A steroid fraction of chloroform extract from bee pollen of Brassica campestris induces apoptosis in human prostate cancer PC-3 cells. Phytotherapy Research, 21(11), 1087–1091. DOI: 10.1002/ptr.2235
- Zhang, H., Wang, X., Wang, K., Li, C. (2015). Antioxidant and tyrosinase inhibitory properties of aqueous ethanol extracts from monofloral bee pollen. Journal of Apicultural Science, 59(1), 119–128. https://doi.org/10.1515/jas-2015-0013