Have a personal or library account? Click to login
Pathogenesis, Epidemiology and Variants of Melissococcus plutonius (Ex White), the Causal Agent of European Foulbrood Cover

Pathogenesis, Epidemiology and Variants of Melissococcus plutonius (Ex White), the Causal Agent of European Foulbrood

Open Access
|Dec 2020

References

  1. Abrol, D. (2013). Beekeeping: a compressive guide to bees and beekeeping: Scientific Publishers.
  2. Allen, M., & Ball, B. (1993). The cultural characteristics and serological relationships of isolates of Melissococcus pluton. Journal of Apicultural Research, 32(2), 80–88. http://dx.doi.org/10.1080/00218839.1993.11101291
  3. Allen, M., Ball, B., & Underwood, B. (1990). An isolate of Melissococcus pluton from Apis laboriosa. Journal of Invertebrate Pathology, 55, 439–440. https://doi.org/10.1016/0022-2011(90)90090-S
  4. Ansari, M. J., Al-Ghamdi, A., Nuru, A., Ahmed, A. M., Ayaad, T. H., Al-Qarni, A., . . . Al-Waili, N. (2017). Survey and molecular detection of Melissococcus plutonius, the causative agent of European Foulbrood in honeybees in Saudi Arabia. Saudi Journal of Biological Sciences, 24(6), 1327–1335. https://doi.org/10.1016/j.sjbs.2016.10.012
  5. Arai, R., Miyoshi-Akiyama, T., Okumura, K., Morinaga, Y., Wu, M., Sugimura, Y., . . . Takamatsu, D. (2014). Development of duplex PCR assay for detection and differentiation of typical and atypical Melissococcus plutonius strains. Journal of Veterinary Medical Science, 76(4), 491–498. https://doi.org/10.1292/jvms.13-0386
  6. Arai, R., Tominaga, K., Wu, M., Okura, M., Ito, K., Okamura, N., . . . Yoshiyama, M. (2012). Diversity of Melissococcus plutonius from honeybee larvae in Japan and experimental reproduction of European foulbrood with cultured atypical isolates. PLOS ONE, 7(3), e33708. https://doi.org/10.1371/journal.pone.0033708
  7. Arbia, A., & Babbay, B. (2011). Management strategies of honey bee diseases. Journal of Entomology, 8(1), 1–15. http://dx.doi.org/10.3923/je.2011.1.15
  8. Bailey, L. (1957a). The cause of European foul brood. Bee World, 38(4), 85–89. https://doi.org/10.1080/0005772X.1957.11094983
  9. Bailey, L. (1957b). The isolation and cultural characteristics of Streptococcus pluton and further observations on Bacterium eurydice. Microbiology, 17(1), 39–48. https://doi.org/10.1099/00221287-17-1-39
  10. Bailey, L. (1959a). An improved method for the isolation of Streptococcus pluton, and observations on its distribution and ecology. Journal of Insect Pathology, 1(1), 80–85.
  11. Bailey, L. (1959b). Recent research on the natural history of European foul brood disease. Bee World, 40(3), 66–70. https://doi.org/10.1080/0005772X.1959.11096701
  12. Bailey, L. (1960). The epizootiology of European foulbrood of the larval honey bee, Apis mellifera Linnaeus.
  13. Bailey, L. (1961). European foulbrood. American Bee Journal, 101, 89–92.
  14. Bailey, L. (1983). Melissococcus pluton, the cause of European foulbrood of honey bees (Apis spp.). Journal of Applied Microbiology, 55(1), 65–69. https://doi.org/10.1111/j.1365-2672.1983.tb02648.x
  15. Bailey, L., & Ball, B. (1991). 4. BACTERIA Honey bee pathology (Second ed., pp. 35–52): Academic Press.
  16. Bailey, L., & Collins, M. (1982). Reclassification of ‘Streptococcus pluton’(White) in a new genus Melissococcus, as Melissococcus pluton nom. rev.; comb. nov. Journal of Applied Microbiology, 53(2), 215–217. https://doi.org/10.1111/j.1365-2672.1982.tb04679.x
  17. Bailey, L., & Locher, N. (1968). Experiments on the etiology of European foul brood of the honeybee. Journal of Apicultural Research, 7(2), 103–107. https://doi.org/10.1080/00218839.1968.11100197
  18. Belloy, L., Imdorf, A., Fries, I., Forsgren, E., Berthoud, H., Kuhn, R., & Charrière, J.-D. (2007). Spatial distribution of Melissococcus plutonius in adult honey bees collected from apiaries and colonies with and without symptoms of European foulbrood. Apidologie, 38(2), 136–140. https://doi.org/10.1051/apido:2006069
  19. Bíliková, K., Wu, G., & Šimúth, J. (2001). Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie, 32(3), 275–283. https://doi.org/10.1051/apido:2001129
  20. Borum, A. E., Özakin, C., Günes, E., Aydin, L., Ülgen, M., & Cakmak, I. (2015). The investigation by PCR and culture methods of Foulbrood diseases in honey bees in South Marmara region. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 21(1). https://doi.org/10.9775/kvfd.2014.11873
  21. Brady, T. S., Merrill, B. D., Hilton, J. A., Payne, A. M., Stephenson, M. B., & Hope, S. (2017). Bacteriophages as an alternative to conventional antibiotic use for the prevention or treatment of Paenibacillus larvae in honeybee hives. Journal of Invertebrate Pathology, 150, 94–100. https://doi.org/10.1016/j.jip.2017.09.010
  22. Brudzynski, K., & Sjaarda, C. (2015). Honey glycoproteins containing antimicrobial peptides, Jelleins of the Major Royal Jelly Protein 1, are responsible for the cell wall lytic and bactericidal activities of honey. PLOS ONE, 10(4). DOI:10.1371/journal.pone.0120238
  23. Budge, G. E., Barrett, B., Jones, B., Pietravalle, S., Marris, G., Chantawannakul, P., . . . Brown, M. A. (2010). The occurrence of Melissococcus plutonius in healthy colonies of Apis mellifera and the efficacy of European foulbrood control measures. Journal of Invertebrate Pathology, 105(2), 164–170. https://doi.org/10.1016/j.jip.2010.06.004
  24. Budge, G. E., Shirley, M. D., Jones, B., Quill, E., Tomkies, V., Feil, E. J., . . . Haynes, E. G. (2014). Molecular epidemiology and population structure of the honey bee brood pathogen Melissococcus plutonius. The ISME Journal, 8(8), 1588. https://doi.org/10.1038/is-mej.2014.20
  25. Cecotti, R., Bergomi, P., Carpana, E., & Tava, A. (2016). Chemical characterization of the volatiles of leaves and flowers from cultivated Malvasylvestris var. mauritiana and their antimicrobial activity against the aetiological agents of the European and American foulbrood of honeybees (Apis mellifera). Natural product communications, 11(10), 1934578X1601101026. https://doi.org/10.1177/1934578x1601101026
  26. Cota-Rubio, E., Hurtado-Ayala, L., Pérez-Morales, E., & Alcántara-Jurado, L. (2014). Resistencia a antibióticos de cepas bacterianas aisladas de animales destinados al consumo humano. ReIbCi, 1(1), 75–85.
  27. Charriere, J., Kilchenmann, V., & Roetschi, A. (2011). Virulence of different Melissococcus plutonius strains on larvae tested by an in vitro larval test. Paper presented at the Proceedings of the 42nd International Apicultural Congress, Buenos Aires, Argentina. p.
  28. Dahle, B., Sørum, H., & Weidemann, J. (2011). European foulbrood in Norway: How to deal with a major outbreak after 30 years absence. Paper presented at the Proceedings of the COLOSS Workshop: The Future of Brood Disease Research-Guidelines, Methods and Development: Copenhagen, p8.
  29. de León-Door, A. P., Romo-Chacón, A., Rios-Velasco, C., Zamudio-Flores, P. B., de Jesús Ornelas-Paz, J., & Acosta-Muñiz, C. H. (2018). Prevalence, typing and phylogenetic analysis of Melissococcus plutonius strains from bee colonies of the State of Chihuahua, Mexico. Journal of Invertebrate Pathology, 159, 71–77. https://doi.org/10.1016/j.jip.2018.10.006
  30. Dicks, L. M., Endo, A., & Van Reenen, C. A. (2014). Minor genera of the Enterococcaceae (Catellicoccus, Melissococcus and Pilibacter). Lactic Acid Bacteria: Biodiversity and Taxonomy, 239–243. https://doi.org/10.1002/9781118655252.ch18
  31. Djordjevic, S. P., Smith, L. A., Forbes, W. A., & Hornitzky, M. A. (1999). Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis. FEMS Microbiology Letters, 173(2), 311–318. https://doi.org/10.1111/j.1574-6968.1999.tb13519.x
  32. Djukic, M., Erler, S., Leimbach, A., Grossar, D., Charrière, J.-D., Gauthier, L., . . . Daniel, R. (2018). Comparative genomics and description of putative virulence factors of Melissococcus plutonius, the causative agent of European foulbrood disease in honey bees. Genes, 9(8), 419. https://doi.org/10.3390/genes9080419
  33. Doughty, S., Luck, J., & Goodman, R. (2004). Evaluating alternative antibiotics for control of European Foulbrood disease: Rural Industries Research and Development Corporation.
  34. Evans, J. D. (2003). Diverse origins of tetracycline resistance in the honey bee bacterial pathogen Paenibacillus larvae. Journal of invertebrate Pathology, 83(1), 46–50. https://doi.org/10.1016/s0022-2011(03)00039-9
  35. Flores, J., Spivak, M., & Gutiérrez, I. (2005). Spores of Ascosphaera apis contained in wax foundation can infect honeybee brood. Veterinary microbiology, 108(1–2), 141–144. https://doi.org/10.1016/j.vetmic.2005.03.005
  36. Fontana, R., Mendes, M. A., De Souza, B. M., Konno, K., César, L. M. M., Malaspina, O., & Palma, M. S. (2004). Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides, 25(6), 919–928. https://doi.org/10.1016/j.peptides.2004.03.016
  37. Forsgren, E. (2010). European foulbrood in honey bees. Journal of Invertebrate Pathology, 103, S5–S9. https://doi.org/10.1016/j.jip.2009.06.016
  38. Forsgren, E., Budge, G. E., Charrière, J.-D., & Hornitzky, M. A. (2013). Standard methods for European foulbrood research. Journal of Apicultural Research, 52(1), 1–14. https://doi.org/10.3896/IBRA.1.52.1.12
  39. Forsgren, E., Locke, B., Sircoulomb, F., & Schäfer, M. O. (2018). Bacterial Diseases in Honeybees. Current Clinical Microbiology Reports, 5(1), 18–25. https://doi.org/10.1007/s40588-018-0083-0
  40. Forsgren, E., Lundhagen, A. C., Imdorf, A., & Fries, I. (2005). Distribution of Melissococcus plutonius in honeybee colonies with and without symptoms of European foulbrood. Microbial Ecology, 50(3), 369–374. https://doi.org/10.2307/25153260
  41. Garrido-Bailón, E., Higes, M., Martínez-Salvador, A., Antúnez, K., Botías, C., Meana, A., . . . Martín-Hernández, R. (2013). The prevalence of the honeybee brood pathogens Ascosphaera apis, Paenibacillus larvae and Melissococcus plutonius in Spanish apiaries determined with a new multiplex PCR assay. Microbial Biotechnology, 6(6), 731–739. https://doi.org/10.1111/1751-7915.12070
  42. Genersch, E. (2010). American Foulbrood in honeybees and its causative agent, Paenibacillus larvae. Journal of Invertebrate Pathology, 103, S10–S19. https://doi.org/10.1016/j.jip.2009.06.015
  43. Giersch, T., Barchia, I., & Hornitzky, M. (2010). Can fatty acids and oxytetracycline protect artificially raised larvae from developing European foulbrood? Apidologie, 41(2), 151–159. https://doi.org/10.1051/apido/2009066
  44. Gochnauer, T., Furgala, B., & Shimanuki, H. (1975). Diseases and enemies of the honey bee. Hive and the Honey Bee, 615–621. http://agris.fao.org/agris-search/search.do?recordID=US201302483835
  45. Goodwin, R. M., Perry, J. H., & Houten, A. T. (1994). The effect of drifting honey bees on the spread of American foulbrood infections. Journal of Apicultural Research, 33(4), 209–212. https://doi.org/10.1080/00218839.1994.11100873
  46. Hashish, M. E., Khattaby, A. M., Khattab, M. M., Gaaboub, I. A., Omar, R. E. (2016). An in vitro evaluation of Cinnamon (Cinnamomum spp.) and Siwak (Salvadora persica) extracts for controlling the foulbrood pathogens of honeybee. African Journal of Microbiology Research, 10(35), 1483–1493. https://doi.org/10.5897/AJMR2016.8025
  47. Haynes, E., Helgason, T., Young, J. P. W., Thwaites, R., Budge, G. E. (2013). A typing scheme for the honeybee pathogen Melissococcus plutonius allows detection of disease transmission events and a study of the distribution of variants. Environmental Microbiology Reports, 5(4), 525–529. https://doi.org/10.1111/1758-2229.12057
  48. Homan, W. L., Tribe, D., Poznanski, S., Li, M., Hogg, G., Spalburg, E., . . . Willems, R. J. (2002). Multilocus sequence typing scheme for Enterococcus faecium. Journal of Clinical Microbiology, 40(6), 1963–1971. https://doi.org/10.1128/jcm.40.6.1963-1971.2002
  49. Hornitzky, M., & Smith, L. (1999). Sensitivity of Australian Melissococcus pluton isolates to oxytetracycline hydrochloride. Australian Journal of Experimental Agriculture, 39(7), 881–883. https://doi.org/10.1071/EA99064
  50. Hornitzky, M. A., & Smith, L. (1998). Procedures for the culture of Melissococcus pluton from diseased brood and bulk honey samples. Journal of Apicultural Research (United Kingdom). https://doi.org/10.1080/00218839.1998.11100987
  51. Killer, J., Dubná, S., Sedláček, I., & Švec, P. (2014). Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. International Journal of Systematic and Evolutionary Microbiology, 64(1), 152–157. https://doi.org/10.1099/ijs.0.053033-0
  52. Kim, J., Park, S., Shin, Y.-K., Kang, H., Kim, K.-Y. (2018). In vitro antibacterial activity of macelignan and corosolic acid against the bacterial bee pathogens Paenibacillus larvae and Melissococcus plutonius. Acta Veterinaria Brno, 87(3), 277–284. https://doi.org/10.2754/avb201887030277
  53. Lewkowski, O., & Erler, S. (2019). Virulence of Melissococcus plutonius and secondary invaders associated with European foulbrood disease of the honey bee. MicrobiologyOpen, 8(3), e00649. https://doi.org/10.1002/mbo3.649
  54. Locke, B., Low, M., & Forsgren, E. (2019). An integrated management strategy to prevent outbreaks and eliminate infection pressure of American foulbrood disease in a commercial beekeeping operation. Preventive Veterinary Medicine, 167, 48–52. https://doi.org/10.1016/j.prevetmed.2019.03.023
  55. Martel, A.-C., Zeggane, S., Drajnudel, P., Faucon, J. P., Aubert, M. (2006). Tetracycline residues in honey after hive treatment. Food Additives and Contaminants, 23(3), 265–273. https://doi.org/10.1080/02652030500469048
  56. Martzy, R., Kolm, C., Brunner, K., Mach, R. L., Krska, R., Šinkovec, H., . . . Reischer, G. H. (2017). A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Enterococcus spp. in water. Water Research, 122, 62–69. https://doi.org/10.1016/j.watres.2017.05.023
  57. McKee, B. A., David Goodman, R., & Alan Hornitzky, M. (2004). The transmission of European foulbrood (Melissococcus plutonius) to artificially reared honey bee larvae (Apis mellifera). Journal of Apicultural Research, 43(3), 93–100. https://doi.org/10.1080/00218839.2004.11101117
  58. McKee, B. A., Djordjevic, S. P., Goodman, R. D., & Hornitzky, M. A. (2003). The detection of Melissococcus pluton in honey bees (Apis mellifera) and their products using a hemi-nested PCR. Apidologie, 34(1), 19–27. https://doi.org/10.1051/apido:2002047
  59. Melliou, E., & Chinou, I. (2014). Chemistry and bioactivities of royal jelly. Studies in Natural Products Chemistry, 43, 261–290. https://doi.org/10.1016/B978-0-444-63430-6.00008-4
  60. Moeller, F. (1978). European foulbrood and sacbrood control. American Bee Journal, 311–315.
  61. Morse, R. A., & Calderone, N. W. (2000). The value of honey bees as pollinators of US crops in 2000. Bee Culture, 128(3), 1–15.
  62. Nakamura, K., Yamazaki, Y., Shiraishi, A., Kobayashi, S., Harada, M., Yoshiyama, M., . . . Takamatsu, D. (2016). Virulence Differences among Melissococcus plutonius Strains with Different Genetic Backgrounds in Apis mellifera Larvae under an Improved Experimental Condition. Scientific Reports, 6. https://doi.org/10.1038/srep33329
  63. Ohashi, K., Natori, S., & Kubo, T. (1999). Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). European Journal of Biochemistry, 265(1), 127–133. https://doi.org/10.1046/j.1432-1327.1999.00696.x
  64. OIE. (2019). The World Organisation for Animal Health Disease distribution maps: European foulbrood of honey bees. Retrieved from: https://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasedistributionmap/index/newlang/en?disease_type_hidden=0&disease_id_hidden=123&selected_disease_name_hidden=European+foulbrood+of+honey+bees+%28-+-%29+&disease_type=0&disease_id_terrestrial=123&species_t=0&disease_id_aquatic=-999&species_a=0&sta_method=semesterly&selected_start_year=2019&selected_report_period=2&selected_start_month=1
  65. Okumura, K., Arai, R., Okura, M., Kirikae, T., Takamatsu, D., Osaki, M., Miyoshi-Akiyama, T. (2011). Complete genome sequence of Melissococcus plutonius ATCC 35311. Journal of Bacteriology, 193(15), 4029–4030. https://doi.org/10.1128/JB.05151-11
  66. Okumura, K., Arai, R., Okura, M., Kirikae, T., Takamatsu, D., Osaki, M., Miyoshi-Akiyama, T. (2012). Complete genome sequence of Melissococcus plutonius DAT561, a strain that shows an unusual growth profile and is representative of an endemic cluster in Japan. Journal of Bacteriology, 194(11), 3014–3014. https://doi.org/10.1128/JB.00437-12
  67. Okumura, K., Takamatsu, D., & Okura, M. (2018). Complete genome sequence of Melissococcus plutonius DAT561, a strain that shows an unusual growth profile, obtained by PacBio sequencing. Genome Announcements., 6(23), e00431–00418. https://doi.org/10.1128/genomeA.00431-18
  68. Okumura, K., Takamatsu, D., & Okura, M. (2019). Complete Genome Sequences of Two Melissococcus plutonius Strains with Different Virulence Profiles, Obtained by PacBio Sequencing. Microbiology Resource Announcements, 8(21), e00038–00019. https://doi.org/10.1128/MRA.00038-19
  69. Peng, Y.-S. C., Mussen, E., Fong, A., Montague, M. A., Tyler, T. (1992). Effects of chlortetracycline of honey bee worker larvae reared in vitro. Journal of Invertebrate Pathology, 60(2), 127–133. https://doi.org/10.1016/0022-2011(92)90085-I
  70. Roetschi, A., Berthoud, H., Kuhn, R., & Imdorf, A. (2008). Infection rate based on quantitative realtime PCR of Melissococcus plutonius, the causal agent of European foulbrood, in honeybee colonies before and after apiary sanitation. Apidologie, 39(3), 362–371. https://doi.org/10.1051/apido:200819
  71. Ruiz-Garbajosa, P., Bonten, M. J., Robinson, D. A., Top, J., Nallapareddy, S. R., Torres, C., . . . Murray, B. E. (2006). Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. Journal of Clinical Microbiology, 44(6), 2220–2228. https://doi.org/10.1128/JCM.02596-05
  72. Sano, O., Kunikata, T., Kohno, K., Iwaki, K., Ikeda, M., Kurimoto, M. (2004). Characterization of royal jelly proteins in both Africanized and European honeybees (Apis mellifera) by two-dimensional gel electrophoresis. Journal of Agricultural and Food Chemistry, 52(1), 15–20. https://doi.org/10.1021/jf030340e
  73. Santos, R. C. V., Lopes, L. Q. S., Alves, C. F. d. S., Fausto, V. P., Pizzutti, K., Barboza, V., . . . de Almeida Vaucher, R. (2014). Antimicrobial activity of tea tree oil nanoparticles against American and European foulbrood diseases agents. Journal of Asia-Pacific Entomology, 17(3), 343–347. https://doi.org/10.1016/j.as-pen.2014.02.003
  74. Šedivá, M., Laho, M., Kohútová, L., Mojžišová, A., Majtán, J., Klaudiny, J. (2018). 10-HDA, a major fatty acid of royal jelly, exhibits pH dependent growthinhibitory activity against different strains of Paenibacillus larvae. Molecules, 23(12), 3236. https://doi.org/10.3390/molecules23123236
  75. Singh Rana, B., Mohan Rao, K., Chakravarty, S. K., Katna, S. (2012). Characterization of Melissococcus plutonius causing European foulbrood disease in Apis cerana F. Journal of Apicultural Research, 51(4), 306–311. https://doi.org/10.3896/IBRA.1.51.4.03
  76. Snodgrass, R. E. (1925). Anatomy and Physiology of the Honeybee: Mcgeaw-Hallbook Company, Ics New York And London.
  77. Spivak, M., Masterman, R., Ross, R., & Mesce, K. A. (2003). Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine. Journal of Neurobiology, 55(3), 341–354. https://doi.org/10.1002/neu.10219
  78. Takamatsu, D., Arai, R., Miyoshi-Akiyama, T., Okumura, K., Okura, M., Kirikae, T., . . . Osaki, M. (2013). Identification of mutations involved in the requirement of potassium for growth of typical Melissococcus plutonius strains. Applied and Environmental Microbiology, 79(12), 3882–3886. https://doi.org/10.1128/AEM.00598-13
  79. Takamatsu, D., Morinishi, K., Arai, R., Sakamoto, A., Okura, M., Osaki, M. (2014). Typing of Melissococcus plutonius isolated from European and Japanese honeybees suggests spread of sequence types across borders and between different Apis species. Veterinary Microbiology, 171(1), 221–226. https://doi.org/10.1016/j.vetmic.2014.03.036
  80. Takamatsu, D., Osaki, M., & Sekizaki, T. (2001). Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid, 46(2), 140–148. https://doi.org/10.1006/plas.2001.1532
  81. Takamatsu, D., Osawa, A., Nakamura, K., Yoshiyama, M., Okura, M. (2017). High-level resistance of Melissococcus plutonius clonal complex 3 strains to antimicrobial activity of royal jelly. Environmental Microbiology Reports. https://doi.org/10.1111/1758-2229.12590
  82. Takamatsu, D., Sato, M., & Yoshiyama, M. (2016). Infection of Melissococcus plutonius clonal complex 12 strain in European honeybee larvae is essentially confined to the digestive tract. Journal of Veterinary Medical Science, 78(1), 29–34. https://doi.org/10.1292/jvms.15-0405
  83. Takamatsu, D., Yoshiyama, M., Okura, M., & Osaki, M. (2015). Application of a thermosensitive suicide vector for Streptococcus to construction of deletion mutants in Melissococcus plutonius, the causative agent of European foulbrood. Journal of Apicultural Research, 54(2), 96–98. https://doi.org/10.1080/00218839.2015.1103996
  84. Tarr, H. (1938). Studies on european foul brood of bees: IV. On the attempted cultivation of Bacillus pluton, the susceptibility of individual larvae to inoculation with this organism and its localization within its host. Annals of Applied Biology, 25(4), 815–821. https://doi.org/10.1111/j.1744-7348.1938.tb02356.x
  85. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H., Swaminathan, B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology, 33(9), 2233.
  86. Thompson, H. M., Waite, R. J., Wilkins, S., Brown, M. A., Bigwood, T., Shaw, M., . . . Sharman, M. (2005). Effects of European foulbrood treatment regime on oxytetracycline levels in honey extracted from treated honeybee (Apis mellifera) colonies and toxicity to brood. Food Additives and Contaminants, 22(6), 573–578. https://doi.org/10.1080/02652030500089986
  87. Tibatá, V. M., Junca, H., Sánchez, A., Corona, M., Ariza Botero, F., Figueroa, J. (2018). Molecular detection of Melissococcus plutonius assessed in Africanized honey bee populations (Apis mellifera) in three regions of Colombia. Journal of Apicultural Research, 1–7. https://doi.org/10.1080/00218839.2018.1439151
  88. Trüper, H. G., & de’Clari, L. (1998). Taxonomic note: erratum and correction of further specific epithets formed as substantives (nouns)‘in apposition’. International Journal of Systematic and Evolutionary Microbiology, 48(2), 615–615. https://doi.org/10.1099/00207713-48-2-615
  89. Vandamme, E. J., & Mortelmans, K. (2019). A century of bacteriophage research and applications: impacts on biotechnology, health, ecology and the economy! Journal of Chemical Technology & Biotechnology, 94(2), 323–342. https://doi.org/10.1002/jctb.5810
  90. Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., Olofsson, T. C. (2012). Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PLOS ONE, 7(3), e33188. https://doi.org/10.1371/journal.pone.0033188
  91. Vezeteu, T. V., Bobiş, O., Moritz, R. F., & Buttstedt, A. (2017). Food to some, poison to others-honeybee royal jelly and its growth inhibiting effect on European Foulbrood bacteria. MicrobiologyOpen, 6(1). https://doi.org/10.1002/mbo3.397
  92. von Büren, R. S., Oehen, B., Kuhn, N. J., & Erler, S. (2019). High-resolution maps of Swiss apiaries and their applicability to study spatial distribution of bacterial honey bee brood diseases. PeerJ, 7, e6393. https://doi.org/10.7717/peerj.6393
  93. Waite, R. J., Brown, M. A., Thompson, H. M., & Bew, M. H. (2003). Controlling European foulbrood with the shook swarm method and oxytetracycline in the UK. Apidologie, 34(6), 569–575. https://doi.org/10.1051/apido:2003052
  94. White, G. F. (1912). The cause of European foul brood (No. 157). US Government Printing Office.
  95. Wiese, N., Fischer, J., Heidler, J., Lewkowski, O., Degenhardt, J., Erler, S. (2018). The terpenes of leaves, pollen, and nectar of thyme (Thymus vulgaris) inhibit growth of bee disease-associated microbes. Scientific Reports, 8(1), 14634. https://doi.org/10.1038/s41598-018-32849-6
  96. Wilkins, S., Brown, M. A., & Cuthbertson, A. G. (2007). The incidence of honey bee pests and diseases in England and Wales. Pest Management Science, 63(11), 1062–1068. https://doi.org/10.1002/ps.1461
  97. Wu, M., Sugimura, Y., Iwata, K., Takaya, N., Takamatsu, D., Kobayashi, M., . . . Yoshiyama, M. (2014). Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease. Journal of Insect Science, 14(1). https://doi.org/10.1093/jis/14.1.129
  98. Yang, X., Li, J., & Wang, R. (2015). Antibacterial Mechanism of 10-HDA Against Bacillus subtilis. Advances in Applied Biotechnology, 332, 317–324. https://doi.org/10.1007/978-3-662-45657-6_34
  99. Yost, D. G., Tsourkas, P., & Amy, P. S. (2016). Experimental bacteriophage treatment of honeybees (Apis mellifera) infected with Paenibacillus larvae, the causative agent of American Foulbrood disease. Bacteriophage, 6(1), e1122698. https://doi.org/10.1080/21597081.2015.1122698
DOI: https://doi.org/10.2478/jas-2020-0030 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 173 - 188
Submitted on: Jan 17, 2020
Accepted on: Aug 27, 2020
Published on: Dec 18, 2020
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Adrián Ponce de León-Door, Gerardo Pérez-Ordóñez, Alejandro Romo-Chacón, Claudio Rios-Velasco, José D. J. Órnelas-Paz, Paul B. Zamudio-Flores, Carlos H. Acosta-Muñiz, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.