Belzunces, L.P., Toutant, J.P., & Bounias, M. (1988). Acetylcholinesterase from Apis mellifera head. Evidence for amphiphilic and hydrophilic forms characterized by Triton X-114 phase separation. Biochemical Journal, 255(2), 463–470. http://doi.org/10.1042/bj2550463
Bicker G. (1999). Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microscopy Research and Technique, 45(3), 174–183. https://doi.org/10.1002/(SICI)1097-0029(19990501)45:3<174::AIDJEMT5>3.0.CO;2-U
Glavan, G., Kos, M., Božič, J., Drobne, D., Sabotič, J., Kokalj, A.J. (2018). Different response of acetylcholinesterases in salt- and detergent-soluble fractions of honeybee haemolymph, head and thorax after exposure to diazinon. Comparative Biochemistry & Physiology Part C: Toxicology and Pharmacology, 205, 8–14. https://doi.org/10.1016/j.cbpc.2017.12.004
Ito, K., Shinomiya, K., Ito, M., Armstrong, J.D., Boyan, G., Hartenstein, V., … Vosshall, L.B. (2014). A systematic nomenclature for the insect brain. Neuron, 81, 755–765. https://doi.org/10.1016/j.neuron.2013.12.017
Karnovsky, M.J., & Roots, L. (1964). A “direct-coloring” thiocholine method for cholinesterases. Journal of Histochemistry & Cytochemistry, 12(3), 219–221. https://doi.org/10.1177/12.3.219
Kim, Y.H., Cha, D.J., Jung, J.W., Kwon, H.W., Lee, S.H. (2012). Molecular and kinetic properties of two acetylcholinesterases from the Western honey bee, Apis mellifera. PLoS One, 7, e48838. https://doi.org/10.1371/journal.pone.0048838
Kim, Y.H., & Lee, S.H. (2013). Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta? Insect Biochemistry and Molecular Biology, 43(1), 47–53. http://dx.doi.org/10.1016/j.ibmb.2012.11.004
Kreissl, S., & Bicker, G. (1989). Histochemistry of acetylcholinesterase and immunocytochemistry of an acetylcholine receptor-like antigen in the brain of the honeybee. The Journal of Comparative Neurology, 286(1), 71–84. https://doi.org/10.1007/BF00318481
Ma, T., Cai, Z., Wellman, S.E., Ho, I.K. (2001). A quantitative histochemistry technique for measuring regional distribution of acetylcholinesterase in the brain using digital scanning densitometry. Analytical Biochemistry, 296(1), 18–28. https://doi.org/10.1006/abio.2001.5208
Palmer, M. J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G. A., Connolly, C. N. (2013). Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature Communications, 4, 1634. https://doi.org/10.1038/ncomms2648.
Rybak, J. (2012). The digital honey bee brain atlas. In: Honeybee neurobiology and behavior—a tribute to Randolf Menzel. (pp 125–140). The Netherlands: Springer. DOI: 10.1007/978-94-007-2099-2
Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N. (2016). Are bee diseases linked to pesticides? A brief review. Environment International, 89–90, 7–11. http://dx.doi.org/10.1016/j.envint.2016.01.009
Thany, S.H., Tricoire-Leignel, H., & Lapied, B. (2010). Identification of cholinergic synaptic transmission in the insect nervous system. Advances in Experimental Medicine and Biology, 683, 1–10. DOI: 10.1007/978-1-4419-6445-8_1
Van Engelsdorp, D., & Meixner, M.D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103(1), 80–95. DOI: 10.1016/j.jip.2009.06.011
Weick, J., & Thorn, R.S. (2002). Effects of acute sublethal exposure to coumaphos or diazinon on acquisition and discrimination of odor stimuli in the honey bee (Hymenoptera: Apidae). Journal of Economic Entomology, 9(2), 227–236. https://doi.org/10.1603/0022-0493-95.2.227
Williamson, S.M., & Wright, G.A. (2013). Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. The Journal of Experimental Biology, 216, 1799–1807. DOI: 10.1242/jeb.083931
Williamson, S. M., Baker, D. D., & Wright, G. A. (2013). Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee, Apis mellifera. Invertebrate Neuroscience, 13(1), 63–70. DOI: 10.1007/s10158-012-0144-7.
Williamson, S.M., Moffat, C., Gormesall, M.A.E., Saranzewa, N., Conolly, C.N., Wright, G.A. (2013). Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees. Frontiers in Physiology, 4, 13. http://dx.doi.org/10.3389/fphys.2013.00013
Yasuyama, K., Meinertzhagen, I.A., & Schürmann, F.W. (2003). Synaptic connections of cholinergic antennal lobe relay neurons innervating the lateral horn neuropile in the brain of Drosophila melanogaster. The Journal of Comparative Neurology, 466(3), 299–315. https://doi.org/10.1002/cne.10867