Have a personal or library account? Click to login
Development and characterization of a flexible three-parameter lifetime distribution: theoretical properties and real-world applications Cover

Development and characterization of a flexible three-parameter lifetime distribution: theoretical properties and real-world applications

By: B. Ahmad and  M. Y. Danish  
Open Access
|Dec 2025

References

  1. Alexander, J., Roberts, M., and Thompson, P. 2012. A generalized beta-generated distribution for financial modeling. Journal of Financial Econometrics 10, 3, 345–367.
  2. Barreto-Souza, W., Santos, A. H. S., and Cordeiro, G. M. 2010. The beta generalized exponential distribution. Journal of Statistical Computation and Simulation 80, 2, 159–172.
  3. Cai, C. 2009. Advanced methodology developments in mixture cure models. Doctoral dissertation, University of South Carolina.
  4. Chen, M. H., Ibrahim, J. G., and Sinha, D. 1999. A new bayesian model for survival data with a survival fraction. Journal of the Royal Statistical Society: Series C (Applied Statistics) 48, 3, 433–448.
  5. Chen, Y., Wang, H., and Zhao, X. 2022. Beta-generated generalized normal distribution with an application for sar image processing. IEEE Transactions on Geoscience and Remote Sensing 60, 1–12.
  6. Cordeiro, G. M., Ortega, E. M. M., and Cordeiro, K. M. 2013. The exponentiated generalized class of distributions. Journal of Data Science 11, 1, 1–27.
  7. Cox, D. R. 1972. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological) 34, 2, 187–220.
  8. Das, J., Pathak, D., and Hamedani, G. G. 2023. A new flexible alpha skew normal distribution. Journal of the Indian Society for Probability and Statistics 24, 485–507.
  9. Escobar-Bach, M. and Helali, S. 2023. Dependent censoring with simultaneous death times based on the generalized marshall-olkin model. arXiv preprint arXiv:2309.03682.
  10. Eugene, N., Lee, C., and Famoye, F. 2002. Beta-normal distribution and its applications. Communications in Statistics - Theory and Methods 31, 4, 497–512.
  11. Gradshteyn, I. S. and Ryzhik, I. M. 2000. Table of integrals, series, and products, 6th ed. Academic Press.
  12. Gupta, R. D., Gupta, R. C., and Gupta, P. L. 1998. Modeling failure time data by lehman alternatives. Communications in Statistics - Theory and Methods 27, 4, 887–904.
  13. Gupta, R. D. and Kundu, D. 1999. Generalized exponential distributions. Australian & New Zealand Journal of Statistics 41, 2, 173–188.
  14. Handique, L., Jamal, F., and Chakraborty, S. 2020. On a family that unifies generalized marshallolkin and poisson-g family of distribution. arXiv preprint arXiv:2006.05816.
  15. Klakattawi, H., Alsulami, D., Elaal, M. A., Dey, S., and Baharith, L. 2022. A new generalized family of distributions based on combining marshal-olkin transformation with t-x family. PLOS ONE 17, 2, e0263673.
  16. Kumar, A. and Singh, B. 2018. Beta-generated gamma distribution: A new approach to reliability analysis. Reliability Engineering & System Safety 169, 321–330.
  17. Kundu, P. and Nanda, A. K. 2017. Reliability study of proportional odds family of discrete distributions. arXiv preprint arXiv:1702.00141.
  18. Lee, E. T. and Wang, J. 2013. Statistical methods for survival data analysis. John Wiley & Sons.
  19. Lee, S., Park, C., and Kim, J. 2016. Beta-generated burr type xii distribution: Properties and applications to insurance data. Insurance: Mathematics and Economics 70, 409–420.
  20. Ley, C. 2014. Flexible modelling in statistics: Past, present and future. arXiv preprint arXiv:1409.6219.
  21. Marshall, A. W. and Olkin, I. 1997. A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika 84, 3, 641–652.
  22. Mohtashami-Borzadaran, H. A., Amini, M., Jabbari, H., and Dolati, A. 2020. Marshall-olkin exponential shock model covering all range of dependence. arXiv preprint arXiv:2004.11241.
  23. Mudholkar, G. S. and Srivastava, D. K. 1993. Exponentiated weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability 42, 2, 299–302.
  24. Nadarajah, S. and Kotz, S. 2006. The exponentiated type distributions. Acta Applicandae Mathematicae 92, 2, 97–111.
  25. Nichols, M. D. and Padgett, W. J. 2006. A bootstrap control chart for weibull percentiles. Quality and Reliability Engineering International 22, 2, 141–151.
  26. Parana´iba, P. F., Ortega, E. M. M., Cordeiro, G. M., and Pescim, R. R. 2011. The beta burr xii distribution with application to lifetime data. Computational Statistics & Data Analysis 55, 2, 1118–1136.
  27. Parzen, E. 1979. Nonparametric statistical data modeling. Journal of the American Statistical Association 74, 365, 105–121.
  28. Prudnikov, A. P., Brychkov, Y. A., and Marichev, O. I. 1986. Integrals and series: Special functions. Gordon and Breach Science Publishers 1.
  29. Rasekhi, M., Hamedani, G. G., and Chinipardaz, R. 2016. A flexible generalization of the skew normal distribution based on a weighted normal distribution. Statistical Methods & Applications 25, 375–394.
  30. Rasekhi, M., Hamedani, G. G., and Chinipardaz, R. 2017. A flexible extension of skew generalized normal distribution. METRON 75, 87–107.
  31. Rodriguez, F. and Martinez, A. 2020. Beta-generated log-normal distribution for environmental data analysis. Environmental and Ecological Statistics 27, 2, 295–312.
  32. Rojo, J. and Ott, R. C. 2010. Testing for tail behavior using extreme spacings. arXiv.
  33. Smith, L. and Jones, R. 2014. Beta-generated weibull distribution with applications to survival data. Statistics in Medicine 33, 10, 1733–1745.
DOI: https://doi.org/10.2478/jamsi-2025-0010 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 73 - 103
Published on: Dec 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 B. Ahmad, M. Y. Danish, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.