Have a personal or library account? Click to login
Robust sparse principal component analysis: situation of full sparseness Cover

Robust sparse principal component analysis: situation of full sparseness

By: B. Bariş Alkan and  I. Ünaldi  
Open Access
|Jul 2022

References

  1. Bien, J., Xu, Y., Mahoney, M. W. 2010. CUR from a sparse optimization viewpoint. In Advances in Neural Information Processing Systems (pp. 217-225).
  2. Cadima, J., Jolliffe, I. T. 1995. Loading and correlations in the interpretation of principle components. Journal of Applied Statistics, 22(2): 203-214.10.1080/757584614
  3. Croux, C., Ruiz-Gazen, A. 2005. High breakdown estimators for principal components: the projection-pursuit approach revisited. Journal of Multivariate Analysis, 95(1): 206-226.10.1016/j.jmva.2004.08.002
  4. Croux, C., Filzmoser, P., Oliveira, M. R. 2007. Algorithms for Projection–Pursuit robust principal component analysis. Chemometrics and Intelligent Laboratory Systems, 87(2): 218-225.10.1016/j.chemolab.2007.01.004
  5. Croux, C., Filzmoser, P., Fritz, H. 2013. Robust sparse principal component analysis. Technometrics, 55(2): 202-214.10.1080/00401706.2012.727746
  6. D’Aspremont, A., El Ghaoui, L., Jordan, M. I., Lanckriet, G. R. 2007. A direct formulation for sparse PCA using semidefinite programming. SIAM review, 49(3): 434-448.10.1137/050645506
  7. Guo, J., James, G., Levina, E., Michailidis, G., Zhu, J. 2010. Principal component analysis with sparse fused loadings. Journal of Computational and Graphical Statistics, 19(4): 930-946.10.1198/jcgs.2010.08127439490725878487
  8. He, Y., Zhou, W., Qian, G., Chen, B. 2014. Methane storage in metal–organic frameworks. Chemical Society Reviews, 43(16): 5657-5678.10.1039/C4CS00032C24658531
  9. Hubert, M., Rousseeuw, P. J., Van Aelst, S. 2008. High-breakdown robust multivariate methods. Statistical Science, 92-119.
  10. Hubert, M., Reynkens, T., Schmitt, E., Verdonck, T. 2016. Sparse PCA for high-dimensional data with outliers. Technometrics, 58(4): 424-434.10.1080/00401706.2015.1093962
  11. Jenatton, R., Obozinski, G., Bach, F. 2010, March. Structured sparse principal component analysis. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp. 366-373).
  12. Jolliffe, I. T. 1995. Rotation of principal components: choice of normalization constraints. Journal of Applied Statistics, 22(1): 29-35.10.1080/757584395
  13. Jolliffe, I. T., Trendafilov, N. T., Uddin, M. 2003. A modified principal component technique based on the LASSO. Journal of computational and Graphical Statistics, 12(3): 531-547.10.1198/1061860032148
  14. Journée M., Nesterov Y., Richtárik P., Sepulchre R. 2010 Generalized power method for sparse principal component analysis. J Mach Learn Res 11:517–553.
  15. Li, G., Chen, Z. 1985. Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. Journal of the American Statistical Association, 80(391): 759-766.10.1080/01621459.1985.10478181
  16. Locantore, N., Marron, J. S., Simpson, D. G., Tripoli, N., Zhang, J. T., Cohen, K. L., ..., Fan, J. 1999. Robust principal component analysis for functional data. Test, 8(1): 1-73.10.1007/BF02595862
  17. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  18. Rousseeuw, P. J., Croux, C. 1993. Alternatives to the median absolute deviation. Journal of the American Statistical association, 88(424): 1273-1283.10.1080/01621459.1993.10476408
  19. Rousseeuw, P. J., Driessen, K. V. 1999. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3): 212-223.10.1080/00401706.1999.10485670
  20. Sigg, C. D., Buhmann, J. M. 2008, July. Expectation-maximization for sparse and non-negative PCA. In Proceedings of the 25th international conference on Machine learning, ACM, pp. 960-967.
  21. Wang, H., Li, B., Leng, C. 2009. Shrinkage tuning parameter selection with a diverging number of parameters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3): 671-683.10.1111/j.1467-9868.2008.00693.x
  22. Zou, H., Hastie, T., Tibshirani, R. 2006. Sparse principal component analysis. Journal of computational and graphical statistics, 15(2): 265-286.10.1198/106186006X113430
DOI: https://doi.org/10.2478/jamsi-2022-0001 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 5 - 20
Published on: Jul 4, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 B. Bariş Alkan, I. Ünaldi, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons Attribution 4.0 License.