Have a personal or library account? Click to login
Automatic Analysis and Anomaly Detection System of Transverse Electron Beam Profile Based on Advanced and Interpretable Deep Learning Architectures Cover

Automatic Analysis and Anomaly Detection System of Transverse Electron Beam Profile Based on Advanced and Interpretable Deep Learning Architectures

Open Access
|Mar 2024

References

  1. M. Piekarski, J. Jaworek-Korjakowska, A. I. Wawrzyniak, and M. Gorgon Convolutional neural network architecture for beam instabilities identification in synchrotron radiation systems as an anomaly detection problem, Measurement, vol. 165, p. 108116, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263224120306540
  2. M. Braei and S. Wagner, Anomaly detection in univariate time-series: A survey on the state-of-the-art, 2020. [Online]. Available: https://arxiv.org/abs/2004.00433
  3. A. Wawrzyniak, A. Marendziak, A. Kisiel, P. Borowiec, R. Nietubyć, J. Wiechecki, K. Karaś, K. Szamota-Leandersson, M. Zajac, C. Bocchetta, and M. Stankiewicz, Solaris a new class of low energy and high brightness light source, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 01 2017.
  4. S. Hulbert and G. Williams, 1 - synchrotron radiation sources, in Vacuum Ultraviolet Spectroscopy, J. Samson and D. Ederer, Eds. Burlington: Academic Press, 2000, pp. 1–25. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780126175608500025
  5. R. Panaś, A. Curcio, and A. Wawrzyniak, Lumos: A visible diagnostic beamlinefor the solaris storage ring, 05 2021, pp. 2901–3903.
  6. G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, Deep learning for anomaly detection, ACM Computing Surveys, vol. 54, no. 2, pp. 1–38, mar 2021. [Online]. Available: https://doi.org/10.11452F3439950
  7. M. Segovia and J. Garcia-Alfaro, Design, modeling and implementation of digital twins, Sensors, vol. 22, p. 5396, 07 2022.
  8. D. Kafkes and M. Schram, Developing robust digital twins and reinforcement learning for accelerator control systems at the fermilab booster, 2021. [Online]. Available: https://arxiv.org/abs/2105.12847
  9. S. Pioli, B. Buonomo, F. Cardelli, P. Ciuffetti, L. Foggetta, and C. Di Giulio, Machine learning based middle-layer for autonomous accelerator operation and control, 2021.
  10. L. Vera Ramiréz, T. Birke, G. Hartmann, R. Müller, M. Ries, A. Schälicke, and P. Schnizer, Machine Learning Tools Improve BESSY II Operation, JACoW, vol. ICALEPCS2021, p. THAL01, 2022.
  11. R. Pirayesh, S. Biedron, J. Diaz Cruz, M. Martinez-Ramon, and S. Sosa Guitron, Achieving Optimal Control of LLRF Control System with Artificial Intelligence, in 17th International Conference on Accelerator and Large Experimental Physics Control Systems, 2020, p. MOPHA114.
  12. T. Dewitte, W. Meert, E. Van Wolputte, and P. Van Trappen, Anomaly detection for cern beam transfer installations using machine learning, in Proceedings of the 17th International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS 2019). JACoW, 2019, pp. 1066–1070.
  13. J. Edelen, K. Brown, K. Bruhwiler, E. Carlin, C. Hall, and V. Schoefer, Machine Learning Based Tuning and Diagnostics for the ATR Line at BNL, JACoW, vol. ICALEPCS2021, p. THAL04, 2022.
  14. A. Pollard, D. Dunning, and M. Maheshwari, Learning to lase: Machine learning prediction of fel beam properties, 2021.
  15. K. Agari, H. Akiyama, Y. Morino, Y. Sato, and A. Toyoda, An Application of Machine Learning for the Analysis of Temperature Rise on the Production Target in Hadron Experimental Facility at J-PARC, in 17th International Conference on Accelerator and Large Experimental Physics Control Systems, 2020, p. WEMPL001.
  16. S. Takano, Beam diagnostics with synchrotron radiation in light sources, 2010.
  17. Y.-B. Leng, G.-Q. Huang, M.-Z. Zhang, Z.-C. Chen, J. Chen, and K.-R. Ye, The beam-based calibration of an x-ray pinhole camera at SSRF, Chinese Physics C, vol. 36, no. 1, pp. 80–83, jan 2012. [Online]. Available: https://doi.org/10.1088%2F1674-1137%2F36%2F1%2F014
  18. A. Kisiel, A. Marendziak, M. Ptaszkiewicz, and A. I. Wawrzyniak, X-ray pinhole camera for emittance measurements in solaris storage ring, 2019.
  19. K. Weiss, T. Khoshgoftaar, and D. Wang, A survey of transfer learning, Journal of Big Data, vol. 3, 05 2016.
  20. R. Mormont, P. Geurts, and R. Maree, Comparison of deep transfer learning strategies for digital pathology, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.
  21. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, 2015. [Online]. Available: https://arxiv.org/abs/1512.00567
  22. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, Densely connected convolutional networks, 2016. [Online]. Available: https://arxiv.org/abs/1608.06993
  23. M. Tan and Q. V. Le, Efficientnet: Re-thinking model scaling for convolutional neural networks, 2019. [Online]. Available: https://arxiv.org/abs/1905.11946
  24. F. Chollet, Deep learning with python, 2017.
  25. R. Y. Rubinstein and D. P. Kroese, The cross-entropy method, in Information Science and Statistics, 2004.
  26. C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, J. Electronic Imaging, vol. 16, p. 049901, 2007.
  27. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980
  28. S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot, F. Cerutti, M. Srivastava, A. Preece, S. Julier, R. M. Rao, T. D. Kelley, D. Braines, M. Sensoy, C. J. Willis, and P. Gurram, Interpretability of deep learning models: A survey of results, in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1–6.
  29. R. R. Selvaraju and et al., Grad-cam: Why did you say that? visual explanations from deep networks via gradient-based localization, 2016.
  30. M. T. Ribeiro and et al., Why should i trust you?: Explaining the predictions of any classifier, ACM KDD: Knowledge Discovery and Data Mining, 2016.
  31. L. van der Maaten and G. Hinton, Viualizing data using t-sne, Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 11 2008.
  32. L. McInnes, J. Healy, and J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction, 2018. [Online]. Available: https://arxiv.org/abs/1802.03426
Language: English
Page range: 139 - 156
Submitted on: Jun 10, 2023
Accepted on: Dec 13, 2023
Published on: Mar 19, 2024
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Michał Piekarski, Joanna Jaworek-Korjakowska, Adriana Wawrzyniak, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.