Have a personal or library account? Click to login
Collision-Free Autonomous Robot Navigation in Unknown Environments Utilizing PSO for Path Planning Cover

Collision-Free Autonomous Robot Navigation in Unknown Environments Utilizing PSO for Path Planning

Open Access
|Aug 2019

References

  1. [1] A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning, 28.
  2. [2] M Shahab Alam, M Usman Rafique, and M Umer Khan. Mobile robot path planning in static environments using particle swarm optimization. International Journal of Computer Science and Electronics Engineering (IJCSEE), 3(3):253–257, 2015.
  3. [3] Dora-Luz Almanza-Ojeda, Yazmín Gomar-Vera, and Mario Ibarra-Manzano. Occupancy Map Construction for Indoor Robot Navigation. 10 2016.10.5772/64871
  4. [4] Ismail Altaharwa, Alaa Sheta, and Mohammed Alweshah. A mobile robot path planning using genetic algorithm in static environment. Journal of Computer Science, 4, 01 2008.10.3844/jcssp.2008.341.344
  5. [5] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and A. Abraham. Inertia weight strategies in particle swarm optimization. In 2011 Third World Congress on Nature and Biologically Inspired Computing, pages 633–640, Oct 2011.10.1109/NaBIC.2011.6089659
  6. [6] Ján Bačík, Frantisek Durovsky, Milan Biros, Karol Kyslan, Daniela Perdukova, and P Sanjeevikumar. Pathfinder – development of automated guided vehicle for hospital logistics. IEEE Access, 5:26892 – 26900, 10 2017.10.1109/ACCESS.2017.2767899
  7. [7] Sumana Biswas, Sreenatha G. Anavatti, and Matthew A. Garratt. Obstacle avoidance for multi-agent path planning based on vectorized particle swarm optimization. In George Leu, Hemant Kumar Singh, and Saber Elsayed, editors, Intelligent and Evolutionary Systems, pages 61–74, Cham, 2017. Springer International Publishing.10.1007/978-3-319-49049-6_5
  8. [8] E. A. S. Carballo, L. Morales, and F. Trujillo-Romero. Path planning for a mobile robot using genetic algorithm and artificial bee colony. In 2017 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pages 8–12, Nov 2017.10.1109/ICMEAE.2017.16
  9. [9] Xin Chen and Yangmin Li. Smooth Path Planning of a Mobile Robot Using Stochastic Particle Swarm Optimization. In 2006 International Conference on Mechatronics and Automation, pages 1722–1727, Luoyang, June 2006. IEEE.10.1109/ICMA.2006.257474
  10. [10] R. Craig Coulter. Implementation of the pure pursuit path tracking algorithm. Technical Report CMU-RI-TR-92-01, Carnegie Mellon University, Pittsburgh, PA, January 1992.
  11. [11] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for autonomous agents. In Proceedings of the Workshop on Intelligent Agents III, Agent Theories, Architectures, and Languages, ECAI ’96, pages 21–35, London, UK, UK, 1997. Springer-Verlag.10.1007/BFb0013570
  12. [12] Avinash Gautam and Sudeept Mohan. A review of research in multi-robot systems. 08 2012.10.1109/ICIInfS.2012.6304778
  13. [13] C. Georgoulas, T. Linner, A. Kasatkin, and T. Bock. An ami environment implementation: Embedding turtlebot into a novel robotic service wall. In ROBOTIK 2012; 7th German Conference on Robotics, pages 1–6, May 2012.
  14. [14] S. Ghosh, P. K. Panigrahi, and D. R. Parhi. Analysis of fpa and ba meta-heuristic controllers for optimal path planning of mobile robot in cluttered environment. IET Science, Measurement Technology, 11(7):817–828, 2017.10.1049/iet-smt.2016.0273
  15. [15] Suhanya Jayaprakasam, Sharul Kamal Abdul Rahim, and Chee Yen Leow. Psogsa-explore: A new hybrid metaheuristic approach for beampattern optimization in collaborative beamforming. Applied Soft Computing, 30:229–237, 2015.10.1016/j.asoc.2015.01.024
  16. [16] Kyriakos Kentzoglanakis. Particle swarm optimization in c. https://github.com/kkentzo/pso, 2017.
  17. [17] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154 vol.3, Sept 2004.10.1109/IROS.2004.1389727
  18. [18] E. Masehian and D. Sedighizadeh. Multi-Objective PSO- and NPSO-based Algorithms for Robot Path Planning. Advances in Electrical and Computer Engineering, 10(4):69–76, 2010.10.4316/aece.2010.04011
  19. [19] Amin Zargar Nasrollahy and Hamid Haj Seyyed Javadi. Using Particle Swarm Optimization for Robot Path Planning in Dynamic Environments with Moving Obstacles and Target. In 2009 Third UKSim European Symposium on Computer Modeling and Simulation, pages 60–65, Athens, Greece, 2009. IEEE.10.1109/EMS.2009.67
  20. [20] Millie Pant, Radha Thangaraj, and Ajith Abraham. Particle swarm optimization: performance tuning and empirical analysis. Foundations of Computational Intelligence, 3:101–128, 2009.10.1007/978-3-642-01085-9_5
  21. [21] P. Raja and S. Pugazhenthi. Path Planning for Mobile Robots in Dynamic Environments Using Particle Swarm Optimization. In 2009 International Conference on Advances in Recent Technologies in Communication and Computing, pages 401–405, Kottayam, Kerala, India, 2009. IEEE.10.1109/ARTCom.2009.24
  22. [22] P Raja and S Pugazhenthi. Optimal path planning of mobile robots: A review. International Journal of the Physical Sciences, 7:1314–1320, 02 2012.10.5897/IJPS11.1745
  23. [23] L. Scharf, W. Harthill, and P. Moose. A comparison of expected flight times for intercept and pure pursuit missiles. IEEE Transactions on Aerospace and Electronic Systems, 4:672–673, 1969.10.1109/TAES.1969.309951
  24. [24] K. H. Sedighi, K. Ashenayi, T. W. Manikas, R. L. Wainwright, and Heng-Ming Tai. Autonomous local path planning for a mobile robot using a genetic algorithm. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), volume 2, pages 1338–1345 Vol.2, June 2004.10.1109/CEC.2004.1331052
  25. [25] Dmitri Sokolov. tinyrenderer, 2017.
  26. [26] Monica Anderson LaPoint Maria Gini Nikolaos Papanikolopoulos John Budenske Steven Damer, Luke Ludwig. Dispersion and exploration algorithms for robots in unknown environments. volume 6230, 2006.10.1117/12.668915
  27. [27] Girma S Tewolde, Darrin M Hanna, and Richard E Haskell. Enhancing performance of pso with automatic parameter tuning technique. In 2009 IEEE Swarm Intelligence Symposium, pages 67–73. IEEE, 2009.10.1109/SIS.2009.4937846
  28. [28] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. Particle swarm optimization. AIAA journal, 41(8):1583–1589, 2003.10.2514/2.2111
Language: English
Page range: 267 - 282
Submitted on: Jun 17, 2018
|
Accepted on: May 12, 2019
|
Published on: Aug 30, 2019
Published by: SAN University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King, published by SAN University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.