Have a personal or library account? Click to login
Green Cement Valuation: An Optimistic Approach to Carbon Dioxide Reduction Cover

Green Cement Valuation: An Optimistic Approach to Carbon Dioxide Reduction

Open Access
|Dec 2023

References

  1. Aliabdo, A. A., Abd Elmoaty, M., Aboshama, A. Y. J. C., & Materials, B. (2016). Utilization of waste glass powder in the production of cement and concrete. 124, 866-877.
  2. Araghi, H. J., Nikbin, I., Reskati, S. R., Rahmani, E., Allahyari, H. J. C., & Materials, B. (2015). An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. 77, 461-471.
  3. Atakan, V., Sahu, S., Quinn, S., Hu, X., & DeCristofaro, N. J. Z. i. (2014). Why CO2 matters-advances in a new class of cement. (3), 60-63.
  4. Awoyera, P., Gobinath, R., Haripriya, S., & Kulandaisami, P. (2020). New light weight mortar for structural application: assessment of porosity, strength and morphology properties. Paper presented at the International Conference on Emerging Trends in Engineering (ICETE) Emerging Trends in Smart Modelling Systems and Design.
  5. Barbara, D., Marta, J., Beata, S.-M., & Florian, R. J. C. J. o. F. S. (2016). Use of eggshells as a raw material for production of calcium preparations. 34(4), 313-317.
  6. Behnood, A., Ziari, H. J. C., & Composites, C. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. 30(2), 106-112.
  7. Bontempi, E., & Bontempi, E. J. R. M. S. S. (2017). A new approach to evaluate the sustainability of raw materials substitution. 79-101.
  8. Cather, B. J. C. (1997). Calcium aluminate cements in construction: a re-assessmemt. 31(4), 17-18.
  9. CHAKARTNARODOM, P., SONPRASARN, P., POLSILAPA, S., KONGKAJUN, N., LAITILA, E., PRAKAYPAN, W. J. J. o. M., Materials, & Minerals. (2023). The influence of water-cement ratios and alumino-silicate based accelerator on the properties of fiber-reinforced cement composites. 33(2), 75-80.
  10. Chen, R., Li, Y., Xiang, R., Li, S. J. C., & Materials, B. (2016). Effect of particle size of fly ash on the properties of lightweight insulation materials. 123, 120-126.
  11. Council, W. J. T. C. S. I., Cement Industry Energy, & Right, C. P. G. t. N. (2009). World Business Council for Sustainable Development.
  12. Crossin, E. J. J. o. C. P. (2015). The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. 95, 101-108.
  13. Danish, A., Salim, M. U., Ahmed, T. J. S. S., & Materials, a. I. J. (2019). Trends and developments in green cement “A sustainable approach”. 2(1), 45-60.
  14. Duxson, P., & Provis, J. L. J. J. o. t. a. c. s. (2008). Designing precursors for geopolymer cements. 91(12), 3864-3869.
  15. Energy, C. I. The Cement Sustainability Initiative.
  16. Environment, U., Scrivener, K. L., John, V. M., Gartner, E. M. J. C., & Research, c. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. 114, 2-26.
  17. Gartner, E., Sui, T. J. C., & Research, C. (2018). Alternative cement clinkers. 114, 27-39.
  18. Gergely, G., Wéber, F., Lukács, I., Tóth, A. L., Horváth, Z. E., Mihály, J., & Balázsi, C. J. C. I. (2010). Preparation and characterization of hydroxyapatite from eggshell. 36(2), 803-806.
  19. Golewski, G. L. J. J. o. c. p. (2018). Green concrete composite incorporating fly ash with high strength and fracture toughness. 172, 218-226.
  20. Gupta, A. R., & Rathod, V. K. J. W. m. (2018). Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: Optimization and kinetics. 79, 169-178.
  21. Habert, G. (2014). Assessing the environmental impact of conventional and ‘green’cement production. In Eco-efficient construction and building materials (pp. 199-238): Elsevier.
  22. Habert, G., De Lacaillerie, J. D. E., & Roussel, N. J. J. o. c. p. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. 19(11), 1229-1238.
  23. Hasanbeigi, A., Price, L., Lu, H., & Lan, W. J. E. (2010). Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants. 35(8), 3461-3473.
  24. Hendriks, C. A., Worrell, E., De Jager, D., Blok, K., & Riemer, P. (1998). Emission reduction of greenhouse gases from the cement industry. Paper presented at the Proceedings of the fourth international conference on greenhouse gas control technologies.
  25. Hesami, S., Ahmadi, S., Nematzadeh, M. J. C., & Materials, B. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. 53, 680-691.
  26. Imbabi, M. S., Carrigan, C., & McKenna, S. J. I. J. o. S. B. E. (2012). Trends and developments in green cement and concrete technology. 1(2), 194-216.
  27. Juenger, M., Winnefeld, F., Provis, J. L., Ideker, J. J. C., & research, c. (2011). Advances in alternative cementitious binders. 41(12), 1232-1243.
  28. Kartini, K., Hamidah, M., Norhana, A., Nur Hanani, A. J. J. o. E. S., & Technology. (2014). Quarry dust fine powder as substitute for ordinary Portland cement in concrete mix. 9(2), 191-205.
  29. Le, H. T., Müller, M., Siewert, K., Ludwig, H.-M. J. M., & design. (2015). The mix design for self-compacting high performance concrete containing various mineral admixtures. 72, 51-62.
  30. Li, C., Sun, H., Li, L. J. C., & research, c. (2010). A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements. 40(9), 1341-1349.
  31. Lund, P. J. E. E. (2007). Impacts of EU carbon emission trade directive on energy-intensive industries—Indicative microeconomic analyses. 63(4), 799-806.
  32. Mohebi, Z., Bahnamiri, A., Dehestani, M. J. C., & Materials, B. (2019). Effect of polypropylene fibers on bond performance of reinforcing bars in high strength concrete. 215, 401-409.
  33. Mohseni, E., Naseri, F., Amjadi, R., Khotbehsara, M. M., & Ranjbar, M. M. J. C. B. M. (2016). Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash. 114, 656-664.
  34. Ojan, M., Montenegro, P., Borsa, M., Altert, C., & Fielding, R. (2016). Development of New Types of Low Carbon Cement.
  35. Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S. J. C., & Materials, b. (2008). Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. 22(7), 1305-1314.
  36. Qin, Y., Zhang, X., Chai, J., Xu, Z., Li, S. J. C., & Materials, B. (2019). Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. 194, 216-225.
  37. Quina, M. J., Soares, M. A., Quinta-Ferreira, R. J. R., Conservation, & Recycling. (2017). Applications of industrial eggshell as a valuable anthropogenic resource. 123, 176-186.
  38. Rao, A., Jha, K. N., Misra, S. J. R., conservation, & Recycling. (2007). Use of aggregates from recycled construction and demolition waste in concrete. 50(1), 71-81.
  39. Rivera, E. M., Araiza, M., Brostow, W., Castano, V. M., Dıaz-Estrada, J., Hernández, R., & Rodrıguez, J. R. J. M. L. (1999). Synthesis of hydroxyapatite from eggshells. 41(3), 128-134.
  40. Saboo, N., Shivhare, S., Kori, K. K., Chandrappa, A. K. J. C., & Materials, B. (2019). Effect of fly ash and metakaolin on pervious concrete properties. 223, 322-328.
  41. Salaudeen, S. A., Tasnim, S. H., Heidari, M., Acharya, B., & Dutta, A. J. W. M. (2018). Eggshell as a potential CO2 sorbent in the calcium looping gasification of biomass. 80, 274-284.
  42. Schneider, M., Romer, M., Tschudin, M., Bolio, H. J. C., & research, c. (2011). Sustainable cement production—present and future. 41(7), 642-650.
  43. Scrivener, K., & Capmas, A. J. A. c. t. (2003). Calcium aluminate cements. 3, 1-31.
  44. Shafigh, P., Nomeli, M. A., Alengaram, U. J., Mahmud, H. B., & Jumaat, M. Z. J. J. o. C. P. (2016). Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. 135, 148-157.
  45. Siemiradzka, W., Dolinska, B., & Ryszka, F. J. C. p. b. (2018). New sources of calcium (chicken eggshells, chelates)-preparation of raw material and tablets. 19(7), 566-572.
  46. Sivakrishna, A., Awoyera, P., Oshin, S., Suji, D., Gobinath, R. J. J. o. E. S., & Technology. (2019). Fabrication of precast concrete slab panels incorporating foundry sand and blast furnace slag as a potential wall insulator. 20(Y).
  47. Stemmermann, P., Beuchle, G., Garbev, K., & Schweike, U. C. (2011). A new sustainable hydraulic binder based on calcium hydrosilicates. Paper presented at the Proceedings of the 13th international congress on the chemistry of cement.
  48. Stemmermann, P., Schweike, U., Garbev, K., Beuchle, G., & Möller, H. J. C. I. (2010). Celitement–a sustainable prospect for the cement industry. 8(5), 52-66.
  49. Summaries, M. C. J. V., USA. (2018). US Geological Survey: Reston. 200.
  50. Teo, S. H., Islam, A., Masoumi, H. R. F., Taufiq-Yap, Y. H., Janaun, J., & Chan, E.-S. J. R. E. (2017). Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus. 111, 892-905.
  51. Thorneycroft, J., Orr, J., Savoikar, P., Ball, R. J. C., & Materials, B. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. 161, 63-69.
  52. Tian, H., Zhang, Y., Ye, L., Yang, C. J. C., & Materials, B. (2015). Mechanical behaviours of green hybrid fibre-reinforced cementitious composites. 95, 152-163.
  53. Tsai, W.-T., Hsien, K.-J., Hsu, H.-C., Lin, C.-M., Lin, K.-Y., & Chiu, C.-H. J. B. t. (2008). Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. 99(6), 1623-1629.
  54. Valipour, M., Yekkalar, M., Shekarchi, M., & Panahi, S. J. J. o. C. P. (2014). Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. 65, 418-423.
  55. van Deventer, J. S., Provis, J. L., Duxson, P., Brice, D. G. J. W., & Valorization, B. (2010). Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. 1, 145-155.
  56. Witoon, T. J. C. I. (2011). Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. 37(8), 3291-3298.
  57. Yang, K.-H., Jung, Y.-B., Cho, M.-S., & Tae, S.-H. J. J. o. C. P. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. 103, 774-783.
  58. Zunino, F., Lopez, M. J. C., & composites, c. (2016). Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multilevel approach. 65, 19-28.
Language: English
Page range: 259 - 268
Submitted on: Jun 13, 2023
Accepted on: Jul 3, 2023
Published on: Dec 6, 2023
Published by: University of Oradea, Civil Engineering and Architecture Faculty
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 U. Siddique, M. Jawad, Asif Ali, Shahan M. Cheema, M. Adil Sultan, M. Jamshaid Akhtar, published by University of Oradea, Civil Engineering and Architecture Faculty
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.