Have a personal or library account? Click to login
Short communication: Chlorpromazine causes a time-dependent decrease of lipids in Saccharomyces cerevisiae Cover

Short communication: Chlorpromazine causes a time-dependent decrease of lipids in Saccharomyces cerevisiae

Open Access
|Feb 2020

References

  1. Abernathy, CO, Lukacs, L, and Zimmerman, HJ. (1977). Adverse effects of chlorpromazine metabolites on isolated hepatocytes. Proc Soc Exp Biol Med155: 474–478.10.3181/00379727-155-39833
  2. Al-Attrache H, Chamieh H, Hamzé M, Morel I, Taha S, and Abdel-Razzak Z. (2018). N-acetylcysteine potentiates diclofenac toxicity in Saccharomyces cerevisiae: stronger potentiation in ABC transporter mutant strains. Drug Chem Toxicol41: 89–94.10.1080/01480545.2017.1320404
  3. Anderson GD, Chan L-N. (2016). Pharmacokinetic Drug Interactions with Tobacco, Cannabinoids and Smoking Cessation Products. Clin Pharmacokinet55: 1353–1368.10.1007/s40262-016-0400-9
  4. Antherieu S, Bachour-El Azzi P, Dumont J, Abdel-Razzak Z, Guguen-Guillouzo C, Fromenty B, Robin M-A, and Guillouzo A. (2013). Oxidative stress plays a major role in chlorpromazine-induced cholestasis in human HepaRG cells. Hepatol57: 1518–1529.10.1002/hep.26160
  5. Bachour-El Azzi P, Sharanek A, Abdel-Razzak Z, Antherieu S, Al-Attrache H, Savary CC, Lepage S, Morel I, Labbe G, Guguen-Guillouzo C, Guillouzo A. (2014). Impact of inflammation on chlorpromazine-induced cytotoxicity and cholestatic features in HepaRG cells. Drug Metab Dispos Biol Fate Chem42: 1556–1566.10.1124/dmd.114.058123
  6. Bowley M, Cooling J, Burditt SL, Brindley DN. (1977). The effects of amphiphilic cationic drugs and inorganic cations on the activity of phosphatidate phosphohydrolase. Biochem J165: 447–454.10.1042/bj1650447
  7. De Filippi L, Fournier M, Cameroni E, Linder P, De Virgilio C, Foti M, Deloche O. (2007). Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells. Curr Genet52: 171–185.10.1007/s00294-007-0151-0
  8. Dejanović B, Vuković-Dejanović V, Stevanović I, Stojanović I, Mandić Gajić G, Dilber S. (2017). Oxidative stress induced by chlorpromazine in patients treated and acutely poisoned with the drug. Vojnosanit Pregl73: 312–317.10.2298/VSP140423047D
  9. Deloche O, de la Cruz J, Kressler D, Doère M, Linder P. (2004). A membrane transport defect leads to a rapid attenuation of translation initiation in Saccharomyces cerevisiae. Mol Cell13: 357–366.10.1016/S1097-2765(04)00008-5
  10. Dudley K, Liu X, De Haan S. (2017). Chlorpromazine dose for people with schizophrenia. Cochrane Database Syst Rev 4, CD007778.10.1002/14651858.CD007778.pub2647811628407198
  11. Hoshi K, Fujino S. (1992). Difference between effects of chlorpromazine and perphenazine on microsomal phospholipids and enzyme activities in rat liver. J Toxicol Sci17: 69–79.10.2131/jts.17.69
  12. Hu J, Kulkarni AP. (2000). Metabolic fate of chemical mixtures. I. “Shuttle Oxidant” effect of lipoxygenase-generated radical of chlorpromazine and related phenothiazines on the oxidation of benzidine and other xenobiotics. Teratog Carcinog Mutagen20: 195–208.10.1002/1520-6866(2000)20:4<;195::AID-TCM2>3.0.CO;2-2
  13. Ide H, Nakazawa Y. (1980). Effect of chlorpromazine on the cytoplasmic phosphatidate phosphohydrolase in rat liver. Biochem Pharmacol29: 789–793.10.1016/0006-2952(80)90558-4
  14. Ide H, Nakazawa Y. (1981). Effect of chlorpromazine on intracellular transport of phospholipids. Chem Biol Interact34: 69–73.10.1016/0009-2797(81)90091-0
  15. Jassim G, Skrede S, Vázquez MJ, Wergedal H, Vik-Mo AO, Lunder N, Diéguez, C, Vidal-Puig A, Berge RK, López M, Steen VM, Fernø J. (2012). Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat. Psychopharmacology (Berl.)219: 783–794.10.1007/s00213-011-2397-y
  16. Kamada Y, Jung US, Piotrowski J, Levin DE. (1995). The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev9: 1559–1571.10.1101/gad.9.13.1559
  17. Knittelfelder OL, Kohlwein SD. (2017). Lipid Extraction from Yeast Cells. Cold Spring Harb Protoc, 2017.10.1101/pdb.prot085449
  18. Martin A, Hopewell R, Martín-Sanz P, Morgan JE, Brindley DN. (1986). Relationship between the displacement of phosphatidate phosphohydrolase from the membrane-associated compartment by chlorpromazine and the inhibition of the synthesis of triacylglycerol and phosphatidylcholine in rat hepatocytes. Biochim Biophys Acta876: 581–591.10.1016/0005-2760(86)90047-0
  19. Morgan K, Martucci N, Kozlowska A, Gamal W, Brzeszczyński F, Treskes P, Samuel K, Hayes P, Nelson L, Bagnaninchi P, Brzeszczynska J, Plevris J. (2019). Chlorpromazine toxicity is associated with disruption of cell membrane integrity and initiation of a pro-inflammatory response in the HepaRG hepatic cell line. Biomed Pharmacother Biomedecine Pharmacother111: 1408–1416.10.1016/j.biopha.2019.01.020
  20. Parmentier C, Truisi GL, Moenks K, Stanzel S, Lukas A, Kopp-Schneider A, Alexandre E, Hewitt PG, Mueller SO, Richert L. (2013). Transcriptomic hepatotoxicity signature of chlorpromazine after short- and long-term exposure in primary human sandwich cultures. Drug Metab Dispos Biol Fate Chem41: 1835–1842.10.1124/dmd.113.052415
  21. Ros E, Small DM, and Carey MC. (1979). Effects of chlorpromazine hydrochlo-ride on bile salt synthesis, bile formation and biliary lipid secretion in the rhesus monkey: a model for chlorpromazine-induced cholestasis. Eur J Clin Invest9: 29–41.10.1111/j.1365-2362.1979.tb01664.x
  22. Saari K, Koponen H, Laitinen J, Jokelainen J, Lauren L, Isohanni M, Lindeman S. (2004). Hyperlipidemia in persons using antipsychotic medication: a general population-based birth cohort study. J Clin Psychiatry65: 547–550.10.4088/JCP.v65n0415
  23. Sayyed K, Aljebeai A-K, Al-Nachar M, Chamieh H, Taha S, Abdel-Razzak Z. (2019). Interaction of cigarette smoke condensate and some of its components with chlorpromazine toxicity on Saccharomyces cerevisiae. Drug Chem Toxicol 1–11.10.1080/01480545.2019.165980931514548
  24. Simpson CE, Ashe MP. (2012). Adaptation to stress in yeast: to translate or not? Biochem Soc Trans40: 794–799.10.1042/BST2012007822817736
  25. Suzuki H, Gen K, Inoue Y. (2013). Comparison of the anti-dopamine D2 and anti-serotonin 5-HT(2A) activities of chlorpromazine, bromperidol, haloperidol and second-generation antipsychotics parent compounds and metabolites thereof. J Psychopharmacol27: 396–400.10.1177/0269881113478281
  26. Tavoloni N, Boyer JL. (1980). Relationship between hepatic metabolism of chlorpromazine and cholestatic effects in the isolated perfused rat liver. J Pharmacol Exp Ther214: 269–274.
  27. Thakur MS, Prapulla SG, Karanth NG. (1989). Estimation of intracellular lipids by the measurement of absorbance of yeast cells stained with Sudan Black B. Enzyme Microb Technol11: 252–254.10.1016/0141-0229(89)90101-4
  28. Thyberg J, Axelsson JE, Hinek A. (1977). In vitro effects of chlorpromazine on microtubules and the Golgi complex in embryonic chick spinal ganglion cells: an electron microscopic study. Brain Res137: 323–332.10.1016/0006-8993(77)90342-0
  29. Wójcikowski J, Boksa J, Daniel WA. (2010). Main contribution of the cyto-chrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver--A comparison with other phenothiazines. Biochem Pharmacol80: 1252–1259.10.1016/j.bcp.2010.06.045
  30. Yeung PK, Hubbard JW, Korchinski ED, Midha KK. (1993). Pharmacokinetics of chlorpromazine and key metabolites. Eur J Clin Pharmacol45: 563–569.10.1007/BF00315316
DOI: https://doi.org/10.2478/intox-2019-0006 | Journal eISSN: 1337-9569 | Journal ISSN: 1337-6853
Language: English
Page range: 41 - 44
Submitted on: May 19, 2019
Accepted on: Jul 11, 2019
Published on: Feb 20, 2020
Published by: Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, Centre of Experimental Medicine
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Dina Muhieddine, Mohamad Moughnié, Ziad Abdel-Razzak, published by Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, Centre of Experimental Medicine
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.