References
- Ozkaraca, O., Bagriacik, O.İ., Guruler, H., Khan, F., Hussain, J., Khan, J., and Laila, U.E., 2023. Multiple brain tumor classification with dense CNN architecture using brain MRI images. Life, 13(2), p.349.
- Babu Vimala, B., Srinivasan, S., Mathivanan, S.K., Mahalakshmi, Jayagopal, P., and Dalu, G.T., 2023. Detection and classification of brain tumors using hybrid deep learning models. Scientific Reports, 13(1), p.23029.
- Hosny, K.M., Mohammed, M.A., Salama, R.A., and Elshewey, A.M., 2025. Explainable ensemble deep learning-based model for brain tumor detection and classification. Neural Computing and Applications, 37(3), pp.1289–1306.
- Deepa, S., Janet, J., Sumathi, S., and Ananth, J.P., 2023. A hybrid optimization algorithm enabled a deep learning approach to brain tumor segmentation and classification using MRI. Journal of Digital Imaging, 36(3), pp.847–868.
- Ayadi, W., Charfi, I., Elhamzi, W. and Atri, M., 2022. Brain tumor classification based on a hybrid approach. The Visual Computer, 38(1), pp.107–117.
- Islam, M.M., Barua, P., Rahman, M., Ahammed, T., Akter, L. and Uddin, J., 2023. Transfer learning architectures with fine-tuning for brain tumor classification using magnetic resonance imaging. Healthcare Analytics, 4, p.100270.
- Muezzinoglu, T., Baygin, N., Tuncer, I., Barua, P.D., Baygin, M., Dogan, S., Tuncer, T., Palmer, E.E., Cheong, K.H., and Acharya, U.R., 2023. PatchResNet: multiple patch division–based deep feature fusion framework for brain tumor classification using MRI images. Journal of digital imaging, 36(3), pp.973–987.
- Sarhan, A.M., 2020. Brain tumor classification in magnetic resonance images using deep learning and wavelet transform. Journal of Biomedical Science and Engineering, 13(06), p.102.
- Díaz-Pernas, F.J., Martínez-Zarzuela, M., Antón-Rodríguez, M. and González-Ortega, D., 2021, February. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. In Healthcare (Vol. 9, No. 2, p. 153). MDPI.
- Younis, A., Qiang, L., Nyatega, C.O., Adamu, M.J. and Kawuwa, H.B., 2022. Brain tumor analysis using deep learning and VGG-16 ensembling learning approaches. Applied Sciences, 12(14), p.7282.
- Anantharajan, S., Gunasekaran, S. and Subramanian, T., 2024. MRI brain tumor detection using deep learning and machine learning approaches. Measurement: Sensors, 31, p.101026.
- Lamrani, D., Cherradi, B., El Gannour, O., Bouqentar, M.A., and Bahatti, L., 2022. Brain tumor detection using MRI images and a convolutional neural network. International Journal of Advanced Computer Science and Applications, 13(7).
- Rahman, T. and Islam, M.S., 2023. MRI brain tumor detection and classification using parallel deep convolutional neural networks. Measurement: Sensors, 26, p.100694.
- Ullah, Z., Jamjoom, M., Thirumalaisamy, M., Alajmani, S.H., Saleem, F., Sheikh-Akbari, A., and Khan, U.A., 2024. A deep learning based intelligent decision support system for automatic detection of brain tumors. Biomedical Engineering and Computational Biology, 15, p.11795972241277322.
- Saeedi, S., Rezayi, S., Keshavarz, H., and R. Niakan Kalhori, S., 2023. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 23(1), p.16.
- Haque, R., Hassan, M.M., Bairagi, A.K., and Shariful Islam, S.M., 2024. NeuroNet19: an explainable deep neural network model for the classification of brain tumors using magnetic resonance imaging data. Scientific Reports, 14(1), p.1524.
- Brain Tumor Dataset, “
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427 ”, accessed on July 2025. - BraTS 2020 Dataset, “
https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation/data ”, accessed on July 2025. - BraTS 2018 Dataset, “
https://www.kaggle.com/datasets/sanglequang/brats2018/data ”, accessed on July 2025. - Wu, Z., Zhang, X., Li, F., Wang, S., Huang, L., and Li, J., 2023. W-Net: A boundary-enhanced segmentation network for stroke lesions. Expert Systems with Applications, 230, p.120637.
- Park, J., Woo, S., Lee, J.Y., and Kweon, I.S., 2020. A simple and light-weight attention module for convolutional neural networks. International Journal of Computer Vision, 128(4), pp.783–798.
- Roy, A.G., Navab, N. and Wachinger, C., 2018. Recalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocks. IEEE transactions on medical imaging, 38(2), pp.540–549.
- Saini, R., Jha, N.K., Das, B., Mittal, S., and Mohan, C.K., 2020. Ulsam: Ultra-lightweight subspace attention module for compact convolutional neural networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1627–1636).
- Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., and Liu, W., 2019. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 603–612).
- Kaplan, K., Kaya, Y., Kuncan, M. and Ertunç, H.M., 2020. Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Medical hypotheses, 139, p.109696.
- Islam, M.S., 2014. Local gradient pattern novel feature representation for facial expression recognition. Journal of AI and Data Mining, 2(1), pp.33–38.
- Haloi, R., Hazarika, J., and Chanda, D., 2020, July. Selection of appropriate statistical features of EEG signals for the detection of Parkinson’s disease. In 2020 International Conference on Computational Performance Evaluation (ComPE) (pp. 761–764). IEEE.
- Rout, J., Das, S.K., Mohalik, P., Mohanty, S., Mohanty, C.K., and Behera, S.K., 2022, December. GLCM-based feature extraction and medical X-ray image classification using machine learning techniques. In International Conference on Intelligent Systems and Machine Learning (pp. 52–63). Cham: Springer Nature Switzerland.
- Yang, X.S. and Hossein Gandomi, A., 2012. Bat algorithm: a novel approach for global engineering optimization. Engineering computations, 29(5), pp.464–483.
- Wu, T.Q., Yao, M. and Yang, J.H., 2016. Dolphin swarm algorithm. Frontiers of Information Technology & Electronic Engineering, 17(8), pp.717–729.
- Xue, J. and Shen, B., 2020. A novel swarm intelligence optimization approach: Sparrow Search Algorithm. Systems science & control engineering, 8(1), pp.22–34.