References
- Ali Haider Khan, Muzammil Hussain, and Muhammad Kamran Malik., “Cardiac disorder classification by electrocardiogram sensing using deep neural network”, Complexity, pp.1–8, 2021.
- Kaniz Fatema, Sidratul Montaha, Md. Awlad Hossen Rony, Sami Azam, Md. Zahid Hasan and Mirjam Jonkman, “A robust framework combining image processing and deep learning hybrid model to classify cardiovascular diseases using a limited number of paper-based complex ECG images”, Biomedicines, vol.10, p.2835, 2022.
- Changling Li, Hang Zhao, Wei Lu, Xiaochang Leng, Li Wang, Xintan Lin, Yibin Pan, Wenbing Jiang, Jun Jiang, Yong Sun, Jianan Wang, Jianping Xiang, “DeepECG: Image-based electrocardiogram interpretation with deep convolutional neural networks”, Biomedical Signal Processing and Control, vol.69, 2021.
- Weibo Song, “A new method for refined recognition for heart disease diagnosis based on deep learning”, Information, vol.11, p.556, 2020.
- Zeynep Hilal Kilimci, Mustafa Yalcin, Ayhan Kucukmanisa and Amit Kumar Mishra, “Heart Disease Detection using Vision-Based Transformer Models from ECG Images”, arXiv preprint arXiv:2310.12630, 2023.
- Tariq Sadad, Mejdl Safran, Inayat Khan, Sultan Alfarhood, Razaullah Khan and Imran Ashraf, “Efficient Classification of ECG Images Using a Lightweight CNN with Attention Module and IoT”, Sensors, vol.23, p.7697, 2023.
- S.Irin Sherly and G.Mathivanan, “ECG BASED MULTI MODAL FRAMEWORK FOR HEART DISEASE DETECTION”, Journal of Theoretical and Applied Information Technology, vol.101, 2023.
- Mohammed F El-Habibi, “Automated Detection of Cardiovascular Diseases using Deep Learning and Electrocardiogram (ECG) Images: A Convolutional Neural Network Approach” International Journal of Academic Engineering Research (IJAER), vol.7, 2023.
- Lotfi Mhamdi, Oussama Dammak, François Cottin and Imed Ben Dhaou, “Artificial intelligence for cardiac diseases diagnosis and prediction using ECG images on embedded systems”, Biomedicines, vol.10, p.2013, 2022.
- S. Karthik, M. Santhosh, M. S. Kavitha and A. Christopher Paul, “Automated Deep Learning Based Cardiovascular Disease Diagnosis Using ECG Signals”, Computer Systems Science & Engineering, vol.42, 2022.
- V. Jahmunah, E.Y.K. Ng, Tan Ru San, U. Rajendra Acharya, “Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals”, Computers in Biology and Medicine, vol.134, 2021.
- Eftal Sehirli, Muhammed Kamil Turan, “A novel method for segmentation of QRS complex on ECG signals and classify cardiovascular diseases via a hybrid model based on machine learning”, International Journal of Intelligent Systems and Applications in Engineering, vol.9, pp.12–21, 2021.
- Adyasha Rath, Debahuti Mishra and Ganapati Panda., “Imbalanced ECG signal-based heart disease classification using ensemble machine learning technique”, Frontiers in Big Data, vol.5, p.1021518. 2022.
- Jinyong Cheng, Qingxu Zou and Yunxiang Zhao., “ECG signal classification based on deep CNN and BiLSTM”, BMC medical informatics and decision making, vol.21, pp.1–12, 2021.
- Venkataramanaiah, B., Kamala, J., “ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for remote cardiac healthcare monitoring”, Soft Comput, vol.24, 17457–17466, 2020.
- Pławiak, P., Acharya, U.R., “Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals”, Neural Comput & Applic, vol.32, 11137–11161, 2020.
- Md. Rashed-Al-Mahfuz, Mohammad Ali Moni, Pietro Lio, Sheikh Mohammed Shariful Islam, Shlomo Berkovsky, Matloob Khushi, Julian M. W. Quinn, “Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions”, Biomed. Eng. Lett., vol.11, 147–162, 2021.
- Amin Ullah, Sadaqat ur Rehman, Shanshan Tu, Raja Majid Mehmood, Fawad and Muhammad Ehatisham-ul-haq, “A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal”, Sensors, vol.21, p.951, 2021.
- Nazrul Anuar Nayan, Hafifah Ab Hamid, Mohd Zubir Suboh, Rosmina Jaafar, Noraidatulakma Abdullah, Nurul Ain Mhd Yusof, Mariatul Akma Hamid, Nur Farawahida Zubiri, Azwa Shawani Kamalul Arifin, Syakila Mohd Abd Daud, Mohd Arman Kamaruddin, A. Rahman A. Jamal, “Cardiovascular disease prediction from electrocardiogram by using machine learning”, 2020.
- Padmavathi Kora, Ajith Abraham, K Meenakshi, “Heart disease detection using hybrid of bacterial foraging and particle swarm optimization”, Evolving Systems vol.11, 15–28, 2020.
- Abdullah Alqahtani, Shtwai Alsubai, Mohemmed Sha, Lucia Vilcekova, and Talha Javed, “Cardiovascular Disease Detection using Ensemble Learning”, Hindawi, Computational Intelligence and Neuroscience, Volume 2022, Article ID 5267498, 9 pages, doi: 10.1155/2022/5267498
- Hana H. Alalawi and Manal S. Alsuwat, “Detection of Cardiovascular Disease using Machine Learning Classification Models”, International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Volume 10 Issue 07, July-2021.
- SKonstantinos C. Siontis, Peter A. Noseworthy, Zachi I. Attia & Paul A. Friedman, “Artificial intelligence-enhanced electrocardiography in cardiovascular disease management”, Nature Reviews Cardiology volume 18, pages465–478 (2021), doi: 10.1038/s41569-020-00503-2
- Siripuri Kiran, Ganta Raghotham Reddy, Girija S.P., Venkatramulu S, Kumar Dorthi and Chandra Shekhar Rao V., “A Gradient Boosted Decision Tree with Binary Spotted Hyena Optimizer for cardiovascular disease detection and classification”, Healthcare Analytics, Volume 3, November 2023, 100173, doi: 10.1016/j.health.2023.100173
- Nikki van der Velde, Cécile P.M. Janus, Daniel J. Bowen BSc a, H. Carlijne Hassing, Isabella Kardys, Flora E. van Leeuwen, Cynthia So-Osman, Remi A. Nout, Olivier C. Manintveld, Alexander Hirsch, “Detection of Subclinical Cardiovascular Disease by Cardiovascular Magnetic Resonance in Lymphoma Survivors”, JACC: CardioOncology, Volume 3, Issue 5, December 2021, Pages 695–706, doi: 10.1016/j.jaccao.2021.09.015
- Kellen Sumwiza, Celestin Twizere, Gerard Rushingabigwi, Pierre Bakunzibake and Peace Bamurigire, “Enhanced cardiovascular disease prediction model using random forest algorithm”, Informatics in Medicine Unlocked, Volume 41, 2023, 101316, doi: 10.1016/j.imu.2023.101316
- Stephen Mariadoss and Felix Augustin, “Enhanced sugeno fuzzy inference system with fuzzy AHP and coefficient of variation to diagnose cardiovascular disease during pregnancy”, Journal of King Saud University - Computer and Information Sciences, Volume 35, Issue 8, September 2023, 101659, doi: 10.1016/j.jksuci.2023.101659
- Youlian Zhu, Cheng Huang, “An Improved Median Filtering Algorithm for Image Noise Reduction”, Physics Procedia, Volume 25, 2012, Pages 609–616, doi: 10.1016/j.phpro.2012.03.133
- Shufu Xie, Shiguang Shan, Xilin Chen and Jie Chen, “Fusing Local Patterns of Gabor Magnitude and Phase for Face Recognition”, IEEE Transactions on Image Processing, Vol. 19, No. 5, May 2010, doi: 10.1109/TIP.2010.2041397
- Wei Chen, Lichun Sui and Zhengchao Xu, Yu Lang, “Improved Zhang-Suen Thinning Algorithm in Binary Line Drawing Applications”, 2012 International Conference on Systems and Informatics (ICSAI 2012), pp: 1947–1950, 2012.
- Ma Xin and Jing Xiaojun, “Palm vein recognition method based on fusion of local Gabor histograms”, The Journal of China Universities of Posts and Telecommunications, 2017, doi: 10.1016/S1005-8885(17)60242-5
- D. Albashish, R. Al-Sayyed, A. Abdullah, M. H. Ryalat and N. Ahmad Almansour, “Deep CNN Model based on VGG16 for Breast Cancer Classification”, 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 2021, pp. 805–810, doi: 10.1109/ICIT52682.2021.9491631
- Jianfang Cao, Minmin Yan, Yiming Jia, Xiaodong Tian and Zibang Zhang, “Application of a modified Inception-v3 model in the dynasty-based classification of ancient murals”, EURASIP Journal on Advances in Signal Processing, (2021) 2021:49, doi: 10.1186/s13634-021-00740-8
- Tushar Nayak, Krishnaraj Chadaga, Niranjana Sampathila, Hilda Mayrose, Nitila Gokulkrishnan, Muralidhar Bairy G, Srikanth Prabhu, Swathi K. S, Shashikiran Umakanth, “Deep learning based detection of monkeypox virus using skin lesion images”, Medicine in Novel Technology and Devices 18 (2023) 100243, doi: 10.1016/j.medntd.2023.100243
- Jing Yang and Guanci Yang, “Modified Convolutional Neural Network Based on Dropout and the Stochastic Gradient Descent Optimizer”, Algorithms 2018, 11(3), 28, doi: 10.3390/a11030028
- Kuppusamy P, Raga Siri P, Harshitha P, Dhanyasri M and Celestine Iwendi, “Customized CNN with Adam and Nadam Optimizers for Emotion Recognition using Facial Expressions”, 2023 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), IEEE, 2023, doi: 10.1109/WISPNET57748.2023.10134002
- Adamu I. Abubakar, Haruna Chiroma, Sameem Abdulkareem, Abdulsalam Ya’u Gital, Sanah Abdullahi Muaz, Jafaar Maitama, Muhammad Lamir Isah and Tutut Herawan, “Modified Neural Network Activation Function”, 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, 2014, doi:10.1109/ICAIET.2014.12
- K. Vijayaprabakaran and K. Sathiyamurthy, “Towards activation function search for long short-term model network: A differential evolution based approach”, Journal of King Saud University – Computer and Information Sciences, volume 34, pp: 2637–2650, 2022, doi: 10.1016/j.jksuci.2020.04.015
https://data.mendeley.com/datasets/gwbz3fsgp8/2 - Muthukumar, K. A., et al. “Integrating electrocardiogram and fundus images for early detection of cardiovascular diseases.” Scientific Reports 15.1 (2025): 4390. doi: 10.1038/s41598-025-87634-z.
- Zhu, Jiayuan, et al. “Cardiovascular disease detection based on deep learning and multi-modal data fusion.” Biomedical Signal Processing and Control 99 (2025): 106882. doi: 10.1016/j.bspc.2024.106882.