Buza, E., Omanovic, S., & Huseinovic, A. (2013, October). Pothole Detection with Image Processing and Spectral Clustering. In proceedings of the 2nd International Conference on Information Technology and Computer Networks (Vol. 810, P. 4853).
Cao, M., Tran, Q., Nguyen, N., & Chang, K. (2020). Survey on performance of deep learning models for detecting road damages using multiple dashcam image resources. Advanced Engineering Informatics, 46, 101182. DOI: 10.1016/j.aei.2020.101182
Chougule, S., & Barhatte, A. (2023). Smart Pothole Detection System using Deep Learning Algorithms. International Journal of Intelligent Transportation Systems Research, 21(3), 483–492. DOI: 10.1007/s13177-023-00363-3
Deepak, S., & Ameer, P. (2022b). Brain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusion. Neurocomputing, 520, 94–102. DOI: 10.1016/j.neucom.2022.11.039
Dhiman, A., & Klette, R. (2019). Pothole detection using computer vision and learning. IEEE Transactions on Intelligent Transportation Systems, 21(8), 3536–3550. DOI: 10.1109/tits.2019.2931297
Du, R., Qiu, G., Gao, K., Hu, L., & Liu, L. (2020). Abnormal road surface recognition based on smartphone acceleration sensor. Sensors, 20(2), 451. DOI: 10.3390/s20020451
Fan, R., Ai, X., & Dahnoun, N. (2018). Road surface 3D reconstruction based on dense subpixel disparity map estimation. IEEE Transactions on Image Processing, 27(6), 3025–3035. DOI: 10.1109/tip.2018.2808770
Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., & Agrawal, A. (2017). Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials, 157, 322–330. DOI: 10.1016/j.conbuildmat.2017.09.110
Heo, D., Choi, J., Kim, S., Tak, T., & Zhang, S. (2023). Image-Based pothole detection using Multi-Scale feature network and risk assessment. Electronics, 12(4), 826. DOI: 10.3390/electronics12040826
Hoang, N., & Nguyen, Q. (2018). A novel method for asphalt pavement crack classification based on image processing and machine learning. Engineering With Computers, 35(2), 487–498. DOI: 10.1007/s00366-018-0611-9
Khater, H. A., & Gamel, S. A. (2023). Early diagnosis of respiratory system diseases (RSD) using deep convolutional neural networks. Journal of Ambient Intelligence and Humanized Computing, 14(9), 12273–12283. DOI: 10.1007/s12652-023-04659-w
Laurent, J., Hébert, J. F., Lefebvre, D., & Savard, Y. (2012). Using 3D laser profiling sensors for the automated measurement of road surface conditions. In Rilem bookseries (pp. 157–167). DOI: 10.1007/978-94-007-4566-7_16
Lee, S., Le, T. H. M., & Kim, Y. (2022). Prediction and detection of potholes in urban roads: Machine learning and deep learning based image segmentation approaches. Developments in the Built Environment, 13, 100109. DOI: 10.1016/j.dibe.2022.100109
Li, S., Yuan, C., Liu, D., & Cai, H. (2016). Integrated processing of image and GPR data for automated pothole detection. Journal of Computing in Civil Engineering, 30(6). DOI: 10.1061/(asce)cp.1943-5487.0000582
Moosaei, H., Ganaie, M., Hladík, M., & Tanveer, M. (2022). Inverse free reduced universum twin support vector machine for imbalanced data classification. Neural Networks, 157, 125–135. DOI: 10.1016/j.neunet.2022.10.003
Nogales, R. E., & Benalcázar, M. E. (2023). Hand Gesture Recognition Using Automatic Feature Extraction and Deep Learning Algorithms with Memory. Big Data and Cognitive Computing, 7(2), 102. DOI: 10.3390/bdcc7020102
Pereira, V., Tamura, S., Hayamizu, S., & Fukai, H. (2018). Pereira, V., Tamura, S., Hayamizu, S., & Fukai, H. (2018, July). A deep learning-based approach for road pothole detection in timor leste. In 2018 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI) (pp. 279–284). IEEE. In IEEE International Conference on Service Operations and Logistics, and Informatics. DOI: 10.1109/soli.2018.8476795
Satti, S. K., Rajareddy, G. N. V., Mishra, K., & Gandomi, A. H. (2024). Potholes and traffic signs detection by classifier with vision transformers. Scientific Reports, 14(1). DOI: 10.1038/s41598-024-52426-4
Singh, P., Bansal, A., & Kumar, S. (2020). Performance Analysis of various Information Platforms for recognizing the quality of Indian Roads. 2022 12th International Conference on Cloud Computing, Data Science &Amp; Engineering (Confluence), 63–76. DOI: 10.1109/confluence47617.2020.9057829
Singh, P., Kamal, A. E., Bansal, A., & Kumar, S. (2023). Road pothole detection from smartphone sensor data using improved LSTM. Multimedia Tools and Applications, 83(9), 26009–26030. DOI: 10.1007/s11042-023-16177-0
Tahir, H., & Jung, E. (2023). Comparative study on distributed lightweight deep learning models for road pothole detection. Sensors, 23(9), 4347. DOI: 10.3390/s23094347
Tamagusko, T., & Ferreira, A. (2023). Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models. Optimizing Pothole Detection in Pavements: A Comparative Analysis of Deep Learning Models, 57, 11. DOI: 10.3390/engproc2023036011
Tsai, Y., & Chatterjee, A. (2017). Pothole detection and classification using 3D technology and watershed method. Journal of Computing in Civil Engineering, 32(2). DOI: 10.1061/(asce)cp.1943-5487.0000726
Vinodhini, K. A., & Sidhaarth, K. R. A. (2023). Pothole detection in bituminous road using CNN with transfer learning. Measurement Sensors, 31, 100940. DOI: 10.1016/j.measen.2023.100940
Wang, H., Zhu, J., & Feng, F. (2023). Elastic net twin support vector machine and its safe screening rules. Information Sciences, 635, 99–125. DOI: 10.1016/j.ins.2023.03.131
Zalama, E., Gómez-García-Bermejo, J., Medina, R., & Llamas, J. (2013). Road crack detection using visual features extracted by Gabor filters. Computer-Aided Civil and Infrastructure Engineering, 29(5), 342–358. DOI: 10.1111/mice.12042
Zhang, A., Wang, K. C. P., & Ai, C. (2017). 3D shadow modeling for detection of descended patterns on 3D pavement surface. Journal of Computing in Civil Engineering, 31(4). DOI: 10.1061/(asce)cp.1943-5487.0000661
Zhang, L., Yang, F., Zhang, Y. D., & Zhu, Y. J. (2016). Road crack detection using deep convolutional neural network. 2022 IEEE International Conference on Image Processing (ICIP), 3708–3712. DOI: 10.1109/icip.2016.7533052
Zhao, M., Su, Y., Wang, J., Liu, X., Wang, K., Liu, Z., Liu, M., & Guo, Z. (2024). MED-YOLOv8s: a new real-time road crack, pothole, and patch detection model. Journal of Real-Time Image Processing, 21(2). DOI: 10.1007/s11554-023-01405-5