References
- Al-Qerem, A., Kharbat, F., Nashwan, S., Ashraf, S., Blaou, K.: General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution. International Journal of Distributed Sensor Networks 16(3), 1550147720911009 (2020)
- Qu, H., Gotman, J.: Improvement in seizure detection performance by automatic adaptation to the EEG of each patient. Electroencephalography and clinical Neurophysiology 86(2), 79–87 (1993)
- Sirven, J.I.: Epilepsy: a spectrum disorder. Cold Spring Harbor perspectives in medicine 5(9) (2015)
- Delanty, N., Vaughan, C.J., French, J.A.: Medical causes of seizures. The Lancet 352(9125), 383–390 (1998)
- Caplan, R.: Adhd in pediatric epilepsy: fact or fiction? Epilepsy Currents 17(2), 93–95 (2017)
- Sirven, J.I.: Sticks and stones: What’s in the name of epilepsy. Epilepsy Currents 14(5), 257–258 (2014)
- Siddiqui, M.K., Morales-Menendez, R., Huang, X., Hussain, N.: A review of epileptic seizure detection using machine learning classifiers. Brain informatics 7(1), 1–18 (2020)
- Thurman, D.J., Beghi, E., Begley, C.E., Berg, A.T., Buchhalter, J.R., Ding, D., Hesdorffer, D.C., Hauser, W.A., Kazis, L., Kobau, R., et al.: Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52, 2–26 (2011)
- Alessio, S.M., Alessio, S.M.: Discrete wavelet transform (dwt). Digital signal processing and spectral analysis for scientists: concepts and applications, 645–714 (2016)
- Castells, F., Laguna, P., Sörnmo, L., Bollmann, A., Roig, J.M.: Principal component analysis in ECG signal processing. EURASIP Journal on Advances in Signal Processing 2007, 1–21 (2007)
- James, C.J., Hesse, C.W.: Independent component analysis for biomedical signals. Physiological measurement 26(1), 15 (2004)
- Sharma, A., Paliwal, K.K.: Linear discriminant analysis for the small sample size problem: an overview. International Journal of Machine Learning and Cybernetics 6, 443–454 (2015)
- Suthaharan, S., Suthaharan, S.: Support vector machine. Machine learning models and algorithms for big data classification: thinking with examples for effective learning, 207–235 (2016)
- Ting, S., Ip, W., Tsang, A.H., et al.: Is Naive Bayes a good classifier for document classification. International Journal of Software Engineering and Its Applications 5(3), 37–46 (2011)
- Steinbach, M., Tan, P.-N.: KNN: K-nearest neighbors. In: The Top Ten Algorithms in Data Mining, pp. 165–176. Chapman and Hall/CRC, ??? (2009)
- Geng, X., Li, D., Chen, H., Yu, P., Yan, H., Yue, M.: An improved feature extraction algorithms of EEG signals based on motor imagery brain-computer interface. Alexandria Engineering Journal 61(6), 4807–4820 (2022)
- Prochazka, A., Kukal, J., Vysata, O.: Wavelet transform use for feature extraction and EEG signal segments classification. In: 2008 3rd International Symposium on Communications, Control and Signal Processing, pp. 719–722 (2008)
- Çınar, S., Acır, N.: A novel system for automatic removal of ocular artefacts in EEG by using outlier detection methods and independent component analysis. Expert Systems with Applications 68, 36–44 (2017)
- Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in knowledge discovery and data mining. (1996)
- Islam, M.Z., D’Alessandro, S., Furner, M., Johnson, L., Gray, D., Carter, L.: Brand switching pattern discovery by data mining techniques for the telecommunication industry in australia. Australasian Journal of Information Systems 20, 1–17 (2016)
- Aljumah, A.A., Ahamad, M.G., Siddiqui, M.K.: Application of data mining: Diabetes health care in young and old patients. Journal of King Saud University-Computer and Information Sciences 25(2), 127–136 (2013)
- Aljumah, A., Siddiqui, M.: Data mining perspective: Prognosis of life style on hypertension and diabetes. International Arab Journal of Information Technology (IAJIT) 13(1) (2016)
- Siddiqui, M.K., Menendez, R.M., Gupta, P.K., Hussain, F., Khatoon, K., Ahmad, S., et al.: Correlation between temperature and covid-19 (suspected, confirmed and death) cases based on machine learning analysis (2020)
- Aljumah, A.A., Siddiqui, M.K.: Hypertension interventions using classification based data mining. Research Journal of Applied Sciences, Engineering and Technology 7(17), 3593–602 (2014)
- Almazyad, A.S., Ahamad, M.G., Siddiqui, M.K., Almazyad, A.S.: Effective hypertensive treatment using data mining in saudi arabia. Journal of clinical monitoring and computing 24, 391–401 (2010)
- Singh, G.A.P., Gupta, P.: Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Computing and Applications 31, 6863–6877 (2019)
- Amin, H.U., Malik, A.S., Ahmad, R.F., Badruddin, N., Kamel, N., Hussain, M., Chooi, W.-T.: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australasian physical & engineering sciences in medicine 38, 139–149 (2015)
- Al-Kharaz, A.A., Alwahhab, A.B.A., Sabeeh, V.: Innovative date fruit classifier based on scatter wave-let and stacking ensemble. HighTech and Innovation Journal 5(2), 361–381 (2024)
https://doi.org/10.28991/HIJ-2024-05-02-010 - Ait Talghalit, I., Alami, H., El Alaoui, S.O.: Contextual semantic embeddings based on transformer models for arabic biomedical questions classification. High-Tech and Innovation Journal 5(4), 1024–1037 (2024)
https://doi.org/10.28991/HIJ-2024-05-04-011 - Armoogum, S., Motean, K., Dewi, D.A., Kurniawan, T.B., Kijsomporn, J.: Breast cancer prediction using transfer learning-based classification model. Emerging Science Journal 8(6), 2373–2384 (2024)
https://doi.org/10.28991/ESJ-2024-08-06-014 - Goh, K.W., Surono, S., Afiatin, M.Y.F., Mahmudah, K.R., Irsalinda, N., Chaimanee, M., Onn, C.W.: Comparison of activation functions in convolutional neural network for poisson noisy image classification. Emerging Science Journal 8(2), 592–602 (2024)
https://doi.org/10.28991/ESJ-2024-08-02-014 - Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using pca, lda, ica and discrete wavelet transform. Biomedical Signal Processing and Control 8(5), 437–448 (2013)
- Shi, B., Wang, Q., Yin, S., Yue, Z., Huai, Y., Wang, J.: A binary harmony search algorithm as channel selection method for motor imagery-based BCI. Neurocomputing 443, 12–25 (2021)
- Kapoor, B., Nagpal, B., Jain, P.K., Abraham, A., Gabralla, L.A.: Epileptic seizure prediction based on hybrid seek optimization tuned ensemble classifier using EEG signals. Sensors 23(1), 423 (2022)
- Tan, P., Wang, X., Wang, Y.: Dimensionality reduction in evolutionary algorithms-based feature selection for motor imagery brain-computer interface. Swarm and Evolutionary Computation 52, 100597 (2020)
- Priyanka, S., Dema, D., Jayanthi, T.: Feature selection and classification of epilepsy from EEG signal. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 2404–2406 (2017)
- Agrawal, A., Garg, L., Dauwels, J.: Application of empirical mode decomposition algorithm for epileptic seizure detection from scalp EEG. Transactions of Japanese Society for Medical and Biological Engineering 51(Supplement), 207 (2013)
- Salem, N., Hussein, S.: Data dimensional reduction and principal components analysis. Procedia Computer Science 163, 292–299 (2019)
- Li, S., Zhou, W., Yuan, Q., Geng, S., Cai, D.: Feature extraction and recognition of ictal EEG using EMD and SVM. Computers in biology and medicine 43(7), 807–816 (2013)
- Doma, V., Pirouz, M.: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals. Journal of Big Data 7(1), 18 (2020)