Have a personal or library account? Click to login
An optimized framework for epileptic seizure detection using DWT-based feature extraction and hybrid dimensionality reduction Cover

An optimized framework for epileptic seizure detection using DWT-based feature extraction and hybrid dimensionality reduction

Open Access
|Dec 2025

References

  1. Al-Qerem, A., Kharbat, F., Nashwan, S., Ashraf, S., Blaou, K.: General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution. International Journal of Distributed Sensor Networks 16(3), 1550147720911009 (2020)
  2. Qu, H., Gotman, J.: Improvement in seizure detection performance by automatic adaptation to the EEG of each patient. Electroencephalography and clinical Neurophysiology 86(2), 79–87 (1993)
  3. Sirven, J.I.: Epilepsy: a spectrum disorder. Cold Spring Harbor perspectives in medicine 5(9) (2015)
  4. Delanty, N., Vaughan, C.J., French, J.A.: Medical causes of seizures. The Lancet 352(9125), 383–390 (1998)
  5. Caplan, R.: Adhd in pediatric epilepsy: fact or fiction? Epilepsy Currents 17(2), 93–95 (2017)
  6. Sirven, J.I.: Sticks and stones: What’s in the name of epilepsy. Epilepsy Currents 14(5), 257–258 (2014)
  7. Siddiqui, M.K., Morales-Menendez, R., Huang, X., Hussain, N.: A review of epileptic seizure detection using machine learning classifiers. Brain informatics 7(1), 1–18 (2020)
  8. Thurman, D.J., Beghi, E., Begley, C.E., Berg, A.T., Buchhalter, J.R., Ding, D., Hesdorffer, D.C., Hauser, W.A., Kazis, L., Kobau, R., et al.: Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52, 2–26 (2011)
  9. Alessio, S.M., Alessio, S.M.: Discrete wavelet transform (dwt). Digital signal processing and spectral analysis for scientists: concepts and applications, 645–714 (2016)
  10. Castells, F., Laguna, P., Sörnmo, L., Bollmann, A., Roig, J.M.: Principal component analysis in ECG signal processing. EURASIP Journal on Advances in Signal Processing 2007, 1–21 (2007)
  11. James, C.J., Hesse, C.W.: Independent component analysis for biomedical signals. Physiological measurement 26(1), 15 (2004)
  12. Sharma, A., Paliwal, K.K.: Linear discriminant analysis for the small sample size problem: an overview. International Journal of Machine Learning and Cybernetics 6, 443–454 (2015)
  13. Suthaharan, S., Suthaharan, S.: Support vector machine. Machine learning models and algorithms for big data classification: thinking with examples for effective learning, 207–235 (2016)
  14. Ting, S., Ip, W., Tsang, A.H., et al.: Is Naive Bayes a good classifier for document classification. International Journal of Software Engineering and Its Applications 5(3), 37–46 (2011)
  15. Steinbach, M., Tan, P.-N.: KNN: K-nearest neighbors. In: The Top Ten Algorithms in Data Mining, pp. 165–176. Chapman and Hall/CRC, ??? (2009)
  16. Geng, X., Li, D., Chen, H., Yu, P., Yan, H., Yue, M.: An improved feature extraction algorithms of EEG signals based on motor imagery brain-computer interface. Alexandria Engineering Journal 61(6), 4807–4820 (2022)
  17. Prochazka, A., Kukal, J., Vysata, O.: Wavelet transform use for feature extraction and EEG signal segments classification. In: 2008 3rd International Symposium on Communications, Control and Signal Processing, pp. 719–722 (2008)
  18. Çınar, S., Acır, N.: A novel system for automatic removal of ocular artefacts in EEG by using outlier detection methods and independent component analysis. Expert Systems with Applications 68, 36–44 (2017)
  19. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in knowledge discovery and data mining. (1996)
  20. Islam, M.Z., D’Alessandro, S., Furner, M., Johnson, L., Gray, D., Carter, L.: Brand switching pattern discovery by data mining techniques for the telecommunication industry in australia. Australasian Journal of Information Systems 20, 1–17 (2016)
  21. Aljumah, A.A., Ahamad, M.G., Siddiqui, M.K.: Application of data mining: Diabetes health care in young and old patients. Journal of King Saud University-Computer and Information Sciences 25(2), 127–136 (2013)
  22. Aljumah, A., Siddiqui, M.: Data mining perspective: Prognosis of life style on hypertension and diabetes. International Arab Journal of Information Technology (IAJIT) 13(1) (2016)
  23. Siddiqui, M.K., Menendez, R.M., Gupta, P.K., Hussain, F., Khatoon, K., Ahmad, S., et al.: Correlation between temperature and covid-19 (suspected, confirmed and death) cases based on machine learning analysis (2020)
  24. Aljumah, A.A., Siddiqui, M.K.: Hypertension interventions using classification based data mining. Research Journal of Applied Sciences, Engineering and Technology 7(17), 3593–602 (2014)
  25. Almazyad, A.S., Ahamad, M.G., Siddiqui, M.K., Almazyad, A.S.: Effective hypertensive treatment using data mining in saudi arabia. Journal of clinical monitoring and computing 24, 391–401 (2010)
  26. Singh, G.A.P., Gupta, P.: Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Computing and Applications 31, 6863–6877 (2019)
  27. Amin, H.U., Malik, A.S., Ahmad, R.F., Badruddin, N., Kamel, N., Hussain, M., Chooi, W.-T.: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australasian physical & engineering sciences in medicine 38, 139–149 (2015)
  28. Al-Kharaz, A.A., Alwahhab, A.B.A., Sabeeh, V.: Innovative date fruit classifier based on scatter wave-let and stacking ensemble. HighTech and Innovation Journal 5(2), 361–381 (2024) https://doi.org/10.28991/HIJ-2024-05-02-010
  29. Ait Talghalit, I., Alami, H., El Alaoui, S.O.: Contextual semantic embeddings based on transformer models for arabic biomedical questions classification. High-Tech and Innovation Journal 5(4), 1024–1037 (2024) https://doi.org/10.28991/HIJ-2024-05-04-011
  30. Armoogum, S., Motean, K., Dewi, D.A., Kurniawan, T.B., Kijsomporn, J.: Breast cancer prediction using transfer learning-based classification model. Emerging Science Journal 8(6), 2373–2384 (2024) https://doi.org/10.28991/ESJ-2024-08-06-014
  31. Goh, K.W., Surono, S., Afiatin, M.Y.F., Mahmudah, K.R., Irsalinda, N., Chaimanee, M., Onn, C.W.: Comparison of activation functions in convolutional neural network for poisson noisy image classification. Emerging Science Journal 8(2), 592–602 (2024) https://doi.org/10.28991/ESJ-2024-08-02-014
  32. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using pca, lda, ica and discrete wavelet transform. Biomedical Signal Processing and Control 8(5), 437–448 (2013)
  33. Shi, B., Wang, Q., Yin, S., Yue, Z., Huai, Y., Wang, J.: A binary harmony search algorithm as channel selection method for motor imagery-based BCI. Neurocomputing 443, 12–25 (2021)
  34. Kapoor, B., Nagpal, B., Jain, P.K., Abraham, A., Gabralla, L.A.: Epileptic seizure prediction based on hybrid seek optimization tuned ensemble classifier using EEG signals. Sensors 23(1), 423 (2022)
  35. Tan, P., Wang, X., Wang, Y.: Dimensionality reduction in evolutionary algorithms-based feature selection for motor imagery brain-computer interface. Swarm and Evolutionary Computation 52, 100597 (2020)
  36. Priyanka, S., Dema, D., Jayanthi, T.: Feature selection and classification of epilepsy from EEG signal. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp. 2404–2406 (2017)
  37. Agrawal, A., Garg, L., Dauwels, J.: Application of empirical mode decomposition algorithm for epileptic seizure detection from scalp EEG. Transactions of Japanese Society for Medical and Biological Engineering 51(Supplement), 207 (2013)
  38. Salem, N., Hussein, S.: Data dimensional reduction and principal components analysis. Procedia Computer Science 163, 292–299 (2019)
  39. Li, S., Zhou, W., Yuan, Q., Geng, S., Cai, D.: Feature extraction and recognition of ictal EEG using EMD and SVM. Computers in biology and medicine 43(7), 807–816 (2013)
  40. Doma, V., Pirouz, M.: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals. Journal of Big Data 7(1), 18 (2020)
Language: English
Submitted on: Jul 15, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Rabel Guharoy, Nanda Dulal Jana, Suparna Biswas, Lalit Garg, Subhayu Ghosh, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.