References
- Chen, Q., Liang, M., Li, Y., Guo, J., Fei, D., Wang, L., He, L., Sheng, C., Cai, Y., Li, X., Wang, J., & Zhang, Z. (2020). Mental health care for medical staff in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e15–e16. DOI: 10.1016/S2215-0366(20)30078-X
- Li, S. W., Wang, Y., Yang, Y. Y., Lei, X. M., & Yang, Y. F. (2020). Analysis of influencing factors of anxiety and emotional disorders in children and adolescents during home isolation during the epidemic of novel coronavirus pneumonia. Chinese Journal of Child Health, 28(1), 1–9.
- Lyu, L., et al. (2020). Privacy and Robustness in Federated Learning: Attacks and Defenses. arXiv preprint arXiv:2012.06337. Trustful Federated Learning
- Zhang, Y., & Li, W. (2020). A comprehensive review of machine learning techniques for anomaly detection in cybersecurity. Computers & Security, 95, 101870. DOI: 10.1016/j.cose.2020.101870
- Kumar, P., & Sharma, S. (2020). Privacy-preserving data mining techniques for healthcare data. Journal of Healthcare Engineering, 2020, 8840582. DOI: 10.1155/2020/8840582
- Schneebeli, C., Kalloori, S., & Klingler, S. (2021). A Practical Federated Learning Framework for Small Number of Stakeholders. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 910–913). ACM. Researchr
- Li, Y., & Zhang, J. (2021). Advances in federated learning for smart healthcare: A review. IEEE Transactions on Industrial Informatics, 17(3), 2300–2311. DOI: 10.1109/TII.2021.3042232
- Li, Y., et al. (2021). Edge-based federated learning for healthcare applications: A survey. IEEE Access, 9, 56088–56101. DOI: 10.1109/ACCESS.2021.3078786
- Gupta, N., & Patel, V. (2021). Intelligent IoT-based healthcare systems for epidemic surveillance. Sensors, 21(15), 5073. DOI: 10.3390/s21155073
- Shi, Y., Yu, H., & Leung, C. (2021). A Survey of Fairness-Aware Federated Learning. arXiv preprint arXiv:2111.01872. Trustful Federated Learning
- Wu, X., & Yu, H. (2021). MarS-FL: A Market Share-based Decision Support Framework for Participation in Federated Learning. arXiv preprint arXiv:2110.13464. Trustful Federated Learning
- Kyaw, P. S., & Yu, H. (2021). Personalized Federated Learning: A Combinational Approach. arXiv preprint arXiv:2108.09618. Trustful Federated Learning
- Gupta, P. (2021). Antiviral potential of plants against COVID-19 during outbreaks—An update. International Journal of Molecular Sciences, 23(21), 13564. DOI: 10.3390/ijms232113564
- Witt, L., et al. (2022). Decentral and Incentivized Federated Learning Frameworks: A Systematic Literature Review. arXiv preprint arXiv:2205.07855v2.arXiv
- Singh, R., & Gupta, M. (2022). A framework for secure data aggregation in IoT-based healthcare systems. Journal of Network and Computer Applications, 194, 103196. DOI: 10.1016/j.jnca.2021.103196
- Zhang, L., & Zhou, H. (2022). A decentralized federated learning approach for privacy-preserving healthcare applications. Future Generation Computer Systems, 128, 165–175. DOI: 10.1016/j.future.2021.10.019
- Wang, S., & Li, Z. (2022). A survey on privacy-preserving methods in healthcare data analysis. Journal of Biomedical Informatics, 124, 103980. DOI: 10.1016/j.jbi.2022.103980
- Witt, L., et al. (2022). Decentral and Incentivized Federated Learning Frameworks: A Systematic Literature Review. arXiv preprint arXiv:2205.07855v2.arXiv
- Liu, R., & Yu, H. (2022). Federated Graph Neural Networks: Overview, Techniques and Challenges. arXiv preprint arXiv:2202.07256. Trustful Federated Learning
- Liu, Z., et al. (2022). Contribution-Aware Federated Learning for Smart Healthcare. In Proceedings of the 34th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-22). Trustful Federated Learning
- Guo, X., et al. (2022). Intelligent Online Selling Point Extraction for E-Commerce Recommendation. In Proceedings of the 34th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-22). Trustful Federated Learning
- Salama, A., et al. (2023). Decentralized Federated Learning on the Edge over Wireless Mesh Networks. arXiv preprint arXiv:2311.01186.arXiv
- Zhang, H., & Zhao, W. (2023). Privacy-preserving federated learning techniques for healthcare applications. Journal of Healthcare Engineering, 2023, 8795421. DOI: 10.1155/2023/8795421
- Kumar, A., & Agarwal, M. (2023). Federated learning in healthcare: A survey of trends, challenges, and opportunities. Computers in Biology and Medicine, 146, 105515. DOI: 10.1016/j.compbiomed.2023.105515
- Smith, D. G., Elwy, A. R., Rosen, R. K., Bueno, M., & Sarkar, I. N. (2024). COVID-19 in early 2021: current status and looking forward. Social Science & Medicine, 354, 117027. DOI: 10.1016/j.socscimed.2024.117027
- Wang, C., Wang, Z., Lau, J. Y.-N., Zhang, K., Li, W., & Li, W. (2024). A multimodal integration pipeline for accurate diagnosis, pathogen identification, and prognosis prediction of pulmonary infections. Innovation, 5(4), 100648. DOI: 10.1016/j.xinn.2024.100648
- Patel, R., & Kumar, R. (2024). A hybrid federated learning framework for secure medical data analysis. Journal of Medical Systems, 48(1), 31. DOI: 10.1007/s10916-024-02072-3
- Singh, R., & Sharma, S. (2024). Enhancing data privacy in federated learning systems for healthcare: A survey and future directions. IEEE Transactions on Cloud Computing, 12(2), 243–257. DOI: 10.1109/TCC.2024.3147684