Have a personal or library account? Click to login
The HALF framework: a privacy-preserving federated learning approach for scalable and secure AI applications Cover

The HALF framework: a privacy-preserving federated learning approach for scalable and secure AI applications

Open Access
|Dec 2025

References

  1. Chen, Q., Liang, M., Li, Y., Guo, J., Fei, D., Wang, L., He, L., Sheng, C., Cai, Y., Li, X., Wang, J., & Zhang, Z. (2020). Mental health care for medical staff in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e15–e16. DOI: 10.1016/S2215-0366(20)30078-X
  2. Li, S. W., Wang, Y., Yang, Y. Y., Lei, X. M., & Yang, Y. F. (2020). Analysis of influencing factors of anxiety and emotional disorders in children and adolescents during home isolation during the epidemic of novel coronavirus pneumonia. Chinese Journal of Child Health, 28(1), 1–9.
  3. Lyu, L., et al. (2020). Privacy and Robustness in Federated Learning: Attacks and Defenses. arXiv preprint arXiv:2012.06337. Trustful Federated Learning
  4. Zhang, Y., & Li, W. (2020). A comprehensive review of machine learning techniques for anomaly detection in cybersecurity. Computers & Security, 95, 101870. DOI: 10.1016/j.cose.2020.101870
  5. Kumar, P., & Sharma, S. (2020). Privacy-preserving data mining techniques for healthcare data. Journal of Healthcare Engineering, 2020, 8840582. DOI: 10.1155/2020/8840582
  6. Schneebeli, C., Kalloori, S., & Klingler, S. (2021). A Practical Federated Learning Framework for Small Number of Stakeholders. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 910–913). ACM. Researchr
  7. Li, Y., & Zhang, J. (2021). Advances in federated learning for smart healthcare: A review. IEEE Transactions on Industrial Informatics, 17(3), 2300–2311. DOI: 10.1109/TII.2021.3042232
  8. Li, Y., et al. (2021). Edge-based federated learning for healthcare applications: A survey. IEEE Access, 9, 56088–56101. DOI: 10.1109/ACCESS.2021.3078786
  9. Gupta, N., & Patel, V. (2021). Intelligent IoT-based healthcare systems for epidemic surveillance. Sensors, 21(15), 5073. DOI: 10.3390/s21155073
  10. Shi, Y., Yu, H., & Leung, C. (2021). A Survey of Fairness-Aware Federated Learning. arXiv preprint arXiv:2111.01872. Trustful Federated Learning
  11. Wu, X., & Yu, H. (2021). MarS-FL: A Market Share-based Decision Support Framework for Participation in Federated Learning. arXiv preprint arXiv:2110.13464. Trustful Federated Learning
  12. Kyaw, P. S., & Yu, H. (2021). Personalized Federated Learning: A Combinational Approach. arXiv preprint arXiv:2108.09618. Trustful Federated Learning
  13. Gupta, P. (2021). Antiviral potential of plants against COVID-19 during outbreaks—An update. International Journal of Molecular Sciences, 23(21), 13564. DOI: 10.3390/ijms232113564
  14. Witt, L., et al. (2022). Decentral and Incentivized Federated Learning Frameworks: A Systematic Literature Review. arXiv preprint arXiv:2205.07855v2.arXiv
  15. Singh, R., & Gupta, M. (2022). A framework for secure data aggregation in IoT-based healthcare systems. Journal of Network and Computer Applications, 194, 103196. DOI: 10.1016/j.jnca.2021.103196
  16. Zhang, L., & Zhou, H. (2022). A decentralized federated learning approach for privacy-preserving healthcare applications. Future Generation Computer Systems, 128, 165–175. DOI: 10.1016/j.future.2021.10.019
  17. Wang, S., & Li, Z. (2022). A survey on privacy-preserving methods in healthcare data analysis. Journal of Biomedical Informatics, 124, 103980. DOI: 10.1016/j.jbi.2022.103980
  18. Witt, L., et al. (2022). Decentral and Incentivized Federated Learning Frameworks: A Systematic Literature Review. arXiv preprint arXiv:2205.07855v2.arXiv
  19. Liu, R., & Yu, H. (2022). Federated Graph Neural Networks: Overview, Techniques and Challenges. arXiv preprint arXiv:2202.07256. Trustful Federated Learning
  20. Liu, Z., et al. (2022). Contribution-Aware Federated Learning for Smart Healthcare. In Proceedings of the 34th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-22). Trustful Federated Learning
  21. Guo, X., et al. (2022). Intelligent Online Selling Point Extraction for E-Commerce Recommendation. In Proceedings of the 34th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-22). Trustful Federated Learning
  22. Salama, A., et al. (2023). Decentralized Federated Learning on the Edge over Wireless Mesh Networks. arXiv preprint arXiv:2311.01186.arXiv
  23. Zhang, H., & Zhao, W. (2023). Privacy-preserving federated learning techniques for healthcare applications. Journal of Healthcare Engineering, 2023, 8795421. DOI: 10.1155/2023/8795421
  24. Kumar, A., & Agarwal, M. (2023). Federated learning in healthcare: A survey of trends, challenges, and opportunities. Computers in Biology and Medicine, 146, 105515. DOI: 10.1016/j.compbiomed.2023.105515
  25. Smith, D. G., Elwy, A. R., Rosen, R. K., Bueno, M., & Sarkar, I. N. (2024). COVID-19 in early 2021: current status and looking forward. Social Science & Medicine, 354, 117027. DOI: 10.1016/j.socscimed.2024.117027
  26. Wang, C., Wang, Z., Lau, J. Y.-N., Zhang, K., Li, W., & Li, W. (2024). A multimodal integration pipeline for accurate diagnosis, pathogen identification, and prognosis prediction of pulmonary infections. Innovation, 5(4), 100648. DOI: 10.1016/j.xinn.2024.100648
  27. Patel, R., & Kumar, R. (2024). A hybrid federated learning framework for secure medical data analysis. Journal of Medical Systems, 48(1), 31. DOI: 10.1007/s10916-024-02072-3
  28. Singh, R., & Sharma, S. (2024). Enhancing data privacy in federated learning systems for healthcare: A survey and future directions. IEEE Transactions on Cloud Computing, 12(2), 243–257. DOI: 10.1109/TCC.2024.3147684
Language: English
Submitted on: Feb 6, 2025
|
Published on: Dec 18, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 S. Akhilendranath, P. Senthilkumar, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.