Kuo I-Y, Hsieh C-H, Kuo W-T, Chang C-P, Wang Y-C, “Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment”, J Biomed Sci., Vol. 29, Article No. 56, 2022. http://dx.doi.org/10.1186/s12929-022-00837-8
Neppelenbroek KH, Campanha NH, Spolidorio DMP, Spolidorio LC, Seó RS, Pavarina AC, “Molecular fingerprinting methods for the discrimination between C. albicans and C. dubliniensis”, Oral Dis., Vol. 12, No. 3, pp. 242–253, 2006. http://dx.doi.org/10.1111/j.1601-0825.2005.01189.x
Miró O, Sánchez M, Espinosa G, Coll-Vinent B, Bragulat E, Millá J, “Analysis of patient flow in the emergency department and the effect of an extensive reorganisation”, Emerg Med J., Vol. 20, No. 2, pp. 143–148, 2003. http://dx.doi.org/10.1136/emj.20.2.143
Gamberi T, Chiappetta G, Fiaschi T, Modesti A, Sorbi F, Magherini F, “Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness”, Med Res Rev., Vol. 42, No. 3, pp. 1111–1146, 2022. http://dx.doi.org/10.1002/med.21872
Luca AR, Ursuleanu TF, Gheorghe L, Grigorovici R, Iancu S, Hlusneac M, et al., “Impact of quality, type and volume of data used by deep learning models in the analysis of medical images”, Inform Med Unlocked, Vol. 29, Article No. 100911, 2022. http://dx.doi.org/10.1016/j.imu.2022.100911
Nalini T, Revathi S, “An enhanced clustering algorithm implemented on biological data in data mining”, International Journal of Pharma and Bio Sciences, Vol. 4, No. 2, pp. 1281 – 1286, 2013.
Kaur I, Doja MN, Ahmad T, “Data mining and machine learning in cancer survival research: An overview and future recommendations”, J Biomed Inform, Vol. 128, Article No. 104026, 2022. http://dx.doi.org/10.1016/j.jbi.2022.104026
Napolitano G, Fox C, Middleton R, Connolly D, “Pattern-based information extraction from pathology reports for cancer registration”, Cancer Causes Control, Vol. 21, No. 11, pp. 1887–1894, 2010. http://dx.doi.org/10.1007/s10552-010-9616-4
Peng C, Cheng J, Cheng Q, “A supervised learning model for high-dimensional and large-scale data”, ACM Transactions on Intelligent System Technology, Vol. 8, No. 2, pp. 1–23, 2017. http://dx.doi.org/10.1145/2972957
Parikh RB, Manz CR, Nelson MN, Evans CN, Regli SH, Connor O, et al., “Clinician perspectives on machine learning prognostic algorithms in the routine care of patients with cancer: a qualitative study”, Supportive Care in Cancer, Vol. 30, pp. 4363–4372, 2022.
Mak K-K, Pichika MR, “Artificial intelligence in drug development: present status and future prospects”, Drug Discovery Today, Vol. 24, No. 3, pp. 773–780, 2019. http://dx.doi.org/10.1016/j.drudis.2018.11.014
Stenzinger A, Alber M, Allgäuer M, Jurmeister P, Bockmayr M, Budczies J, et al., “Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling”, Semin Cancer Biology, Vol. 84, pp. 129–143, 2022. http://dx.doi.org/10.1016/j.semcancer.2021.02.011
Lee WW, Alkureishi ML, “The impact of EMRs on communication within the doctor-patient relationship”, In: Papadakos, P., Bertman, S. (eds) Distracted Doctoring. Springer, Cham., pp. 101–120, 2017. https://doi.org/10.1007/978-3-319-48707-6_9.
Khorram-Manesh A, Dulebenets MA, Goniewicz K, “Implementing public health strategies-the need for educational initiatives: A systematic review”, Int J Environ Res Public Health, Vol. 18, No. 11, Article No. 5888, 2021. http://dx.doi.org/10.3390/ijerph18115888
Watanabe N, Woo SL-Y, Papageorgiou C, Celechovsky C, Takai S, “Fate of donor bone marrow cells in medial collateral ligament after simulated autologous transplantation”, Microsc Res Tech, Vol. 58, No. 1, pp. 39–44, 2002. http://dx.doi.org/10.1002/jemt.10115
Aldwin CM, Spiro A, Levenson MR, Cupertino AP, “Longitudinal findings from the Normative Aging Study: III. Personality, individual health trajectories, and mortality”, Psychol Aging, Vol. 16, No. 3, pp. 450–465, 2001. http://dx.doi.org/10.1037//0882-7974.16.3.450
Lee KY, Kim J, “Artificial intelligence technology trends and IBM Watson references in the medical field”, Korean Med Educ Rev, Vol. 18, No. 2, pp. 51–57, 2016. http://dx.doi.org/10.17496/kmer.2016.18.2.51
Ratti E, Graves M., “Explainable machine learning practices: opening another black box for reliable medical AI”, AI and Ethics, Vol. 2, pp. 801–814, 2022. https://doi.org/10.1007/s43681-022-00141-z
Boyd LA, Earnhardt RC, Dunn JT, Frierson HF, Hanks JB, “Preoperative evaluation and predictive value of fine-needle aspiration and frozen section of thyroid nodules” J Am Coll Surg., Vol. 187, No. 5, pp. 494–502, 1998. http://dx.doi.org/10.1016/s1072-7515(98)00221-x
Mahmood AA, Murgod R, Swarup Badapanda S, “Artificial Intelligence in Oncology: Present Potential, Prospective Prospects, and Ethical Reviews”, International Journal of Trends in OncoScience, pp. 37–45, 2024.
Zhou H, Baloch ZW, Nayar R, Bizzarro T, Fadda G, Adhikari-Guragain D, et al., “Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): Implications for the risk of malignancy (ROM) in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC)”, Cancer Cytopathol., Vol. 126, No. 1, pp. 20–26, 2018. http://dx.doi.org/10.1002/cncy.21926
Elliott Range DD, Dov D, Kovalsky SZ, Henao R, Carin L, Cohen J, “Application of a machine learning algorithm to predict malignancy in thyroid cytopathology: Machine learning and thyroid cytopathology”, Cancer Cytopathology, Vol. 128, No. 4, pp. 287–295, 2020. http://dx.doi.org/10.1002/cncy.22238
Park Y, Heider D, Hauschild A-C, “Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence”, Cancers (Basel), Vol. 13, No. 13, Article No. 3148, 2021. http://dx.doi.org/10.3390/cancers13133148
Tripathi R, Sharma P, Chakraborty P, Varadwaj PK, “Next-generation sequencing revolution through big data analytics”, Front Life Sci., Vol. 9, No. 2, pp. 119–49, 2016. http://dx.doi.org/10.1080/21553769.2016.1178180
Biswas N, Chakrabarti S, “Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer”, Front Oncology, Vol. 10, Article No. 588221, 2020. http://dx.doi.org/10.3389/fonc.2020.588221
Perelmuter VM, Tashireva LA, Manskikh VN, Denisov EV, Savelieva OE, Kaygorodova EV, et al., “Heterogeneity and plasticity of immune inflammatory responses in the tumor microenvironment: Their role in the antitumor effect and tumor aggressiveness”, Biology Bull Rev., Vol. 8, No. 5, pp. 431–448, 2018. http://dx.doi.org/10.1134/s2079086418050055
Rodellar J, Alférez S, Acevedo A, Molina A, Merino A, “Image processing and machine learning in the morphological analysis of blood cells”, Int J. Lab Hematology, Vol. 40, Suppl. 1, pp. 46–53, 2018. http://dx.doi.org/10.1111/ijlh.12818
Kini SR, Miller JM, Hamburger JI, Smith-Purslow MJ, “Cytopathology of follicular lesions of the thyroid gland”, Diagn Cytopathology, Vol. 1, No. 2, pp. 123–132, 1985. http://dx.doi.org/10.1002/dc.2840010208
Saini A, Breen I, Pershad Y, Naidu S, Knuttinen MG, Alzubaidi S, et al., “Radiogenomics and radiomics in liver cancers”, Diagnostics (Basel), Vol. 9, No. 1, pp. 1–23, 2018. http://dx.doi.org/10.3390/diagnostics9010004
Jussupow E, Spohrer K, Heinzl A, Gawlitza J, “Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence”, Inf Syst Res., Vol. 32, No. 3, pp. 713–735, 2021. http://dx.doi.org/10.1287/isre.2020.0980
Liang M, Ting Y, Fu H, “Estimating individualized optimal combination therapies through outcome weighted deep learning algorithms”, Statistics in Medicine, Vol. 37, No. 27, pp. 3869–3886, 2018. http://arxiv.org/abs/1804.05378
Mahmood AA, Jha AM, Manivannan K, “Precision Medicine: Personalizing The Fight Against Cancer”, International Journal of Trends in OncoScience., pp. 10–18, 2024. DOI: https://doi.org/10.22376/ijtos.2023.2.1.10-18
Dia AK, Ebrahimpour L, Yolchuyeva S, Tonneau M, Lamaze FC, Orain M, et al., “The Cross-Scale Association between Pathomics and Radiomics Features in Immunotherapy-Treated NSCLC Patients: A Preliminary Study”, Cancers, Vol. 16, No. 2, pp. 1–24, 2024. https://doi.org/10.3390/cancers16020348
Hong R, Liu W, DeLair D, Razavian N, Fenyö D, “Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models”, Cell Rep Med., Vol. 2, No. 9, Article No. 100400, 2021. http://dx.doi.org/10.1016/j.xcrm.2021.100400
Zhang H, Ji J, Liu Z, Lu H, Qian C, Wei C, et al., “Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: a multicenter study”, BMC Med., Vol. 21, No. 1, Article No. 270, 2023. http://dx.doi.org/10.1186/s12916-023-02964-x
Corrales-Rodriguez L, Soulières D, Weng X, Tehfe M, Florescu M, Blais N, “Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study”, Thromb Res., Vol. 133, No. 1, pp. 48–51, 2014. http://dx.doi.org/10.1016/j.thromres.2013.10.042
Schweitzer N, Vogel A, “Systemic therapy of cholangiocarcinoma: From chemotherapy to targeted therapies”, Best Pract Res Clin Gastroenterol, Vol. 29, No. 2, pp. 345–353, 2015. http://dx.doi.org/10.1016/j.bpg.2015.01.002
Yardley-Jones A, Anderson D, Parke DV, “The toxicity of benzene and its metabolism and molecular pathology in human risk assessment”, Br J Ind Med., Vol. 48, No. 7, pp. 437–444, 1991. http://dx.doi.org/10.1136/oem.48.7.437
Atkins D, Makridis CA, Alterovitz G, Ramoni R, Clancy C, “Developing and implementing predictive models in a learning healthcare system: Traditional and artificial intelligence approaches in the Veterans Health Administration”, Annu Rev Biomed Data Sci., Vol. 5, No. 1, pp. 393–413, 2022. http://dx.doi.org/10.1146/annurev-biodatasci-122220-110053
Zhang S, Han P, Wu C, “Calibration techniques encompassing survey sampling, missing data analysis and causal inference”, Int Stat Rev., Vol. 91, No. 2, pp. 165–92, 2023. http://dx.doi.org/10.1111/insr.12518
Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T, “Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis”, Clinical Chemistry and Laboratory Medicine (CCLM), Vol. 60, pp. 1974–1983, 2022.
Ye W, Luo C, Liu F, Liu Z, Chen F, “CD96 correlates with immune infiltration and impacts patient prognosis: A pan-cancer analysis”, Front Oncol., Vol. 11, Article No. 634617, 2021. http://dx.doi.org/10.3389/fonc.2021.634617
Wulfkuhle JD, Paweletz CP, Steeg PS, Petricoin EF, Liotta L., “Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. InNew Trends in Cancer for the 21st Century”, In: Proceedings of the International Symposium on Cancer: New Trends in Cancer for the 21st Century. Valencia, Spain; US: Springer, pp. 59–68, 2002.
Picard M, Scott-Boyer M-P, Bodein A, Périn O, Droit A, “Integration strategies of multi-omics data for machine learning analysis”, Comput Struct Biotechnol J., Vol. 19, pp. 3735–3746, 2021. http://dx.doi.org/10.1016/j.csbj.2021.06.030
Al-Tashi Q, Saad MB, Muneer A, Qureshi R, Mirjalili S, Sheshadri A, et al., “Machine learning models for the identification of prognostic and predictive cancer biomarkers: A systematic review”, Int J Mol Sci., Vol. 24, No. 9, Article No. 7781, pp. 1–42, 2023. http://dx.doi.org/10.3390/ijms24097781
Klein CA, Hölzel D, “Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics”, Cell Cycle., Vol. 5, No. 16, pp. 1788–1798, 2006. http://dx.doi.org/10.4161/cc.5.16.3097
Thiyagarajan S, Chakravarthy T, Arivoli PV, “Diagnosing Breast Cancer with Machine Learning Algorithms”, International Journal of Pharmaceutical Research, Vol. 23, pp. 1–13, 2020.
Quinlan AR, “BEDTools: the Swiss-army tool for genome feature analysis”, Current protocols in bioinformatics, Vol. 47, pp. 11–22, 2014. https://doi.org/10.1002/0471250953.bi1112s47
Almomani F., “Prediction the performance of multistage moving bed biological process using artificial neural network (ANN)”, Sci Total Environ., Vol. 744, Article No. 140854, 2020. http://dx.doi.org/10.1016/j.scitotenv.2020.140854
Mahmoud AS, Alkhenizan A, Shafiq M, Alsoghayer S, “The impact of the implementation of a clinical decision support system on the quality of healthcare services in a primary care setting”, J Family Med Prim Care, Vol. 9, No. 12, pp. 6078–6084, 2020. http://dx.doi.org/10.4103/jfmpc.jfmpc_1728_20
Anderson G, Horvath J, “The growing burden of chronic disease in America”, Public Health Rep., Vol. 119, No. 3, pp. 263–270, 2004. http://dx.doi.org/10.1016/j.phr.2004.04.005
Lenouvel E, Novak L, Biedermann A, Kressig RW, Klöppel S, “Preventive treatment options for fear of falling within the Swiss healthcare system: A position paper”, Z Gerontol Geriat., Vol. 55, pp. 597–602, 2022. https://doi.org/10.1007/s00391-021-01957-w
Sim I, Gorman P, Greenes RA, Haynes RB, Kaplan B, Lehmann H, et al., “Clinical decision support systems for the practice of evidence-based medicine”, J Am Med Inform Assoc., Vol. 8, No. 6, pp. 527–534, 2001. http://dx.doi.org/10.1136/jamia.2001.0080527
Almkvist O., “Neuropsychological features of early Alzheimer’s disease: preclinical and clinical stages”, Acta Neurol. Scand. Suppl., Vol. 165, pp. 63–71, 1996. http://dx.doi.org/10.1111/j.1600-0404.1996.tb05874.x
Roncaglioni A, Toropov AA, Toropova AP, Benfenati E., “In silico methods to predict drug toxicity”, Current Opinion Pharmacology, Vol. 13, No. 5, pp. 802–806, 2013. http://dx.doi.org/10.1016/j.coph.2013.06.001
Judson R, Elloumi F, Setzer RW, Li Z, Shah I., “A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model”, BMC Bioinformatics, Vol. 9, No. 1, Article No. 241, 2008. http://dx.doi.org/10.1186/1471-2105-9-241
Raies AB, Bajic VB., “In silico toxicology: computational methods for the prediction of chemical toxicity: Computational methods for the prediction of chemical toxicity”, Wiley Interdisciplinary Rev Comput. Mol Sci., Vol. 6, No. 2, pp. 147–172, 2016. http://dx.doi.org/10.1002/wcms.1240
Paster I, Shacham M, Brauner N, “Investigation of the relationships between molecular structure, molecular descriptors, and physical properties”, Ind Eng Chem Res., Vol. 48, No. 21, pp. 9723–9734, 2009. http://dx.doi.org/10.1021/ie801318y
Tran TT, Wibowo S, Tayara A, Chong H, “Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives”, Journal of Chemical Information and Modeling, Vol. 63, No. 9, pp. 2628–2643, 2023.
Huang B, von Lilienfeld OA. Ab initio, “Machine Learning in chemical compound space”, Chem. Rev., Vol. 121, No. 16, pp. 10001–10036, 2021. http://dx.doi.org/10.1021/acs.chemrev.0c01303
Giraud P, Giraud P, Gasnier A, El Ayachy R, Kreps S, Foy J-P, et al., “Radiomics and machine learning for radiotherapy in head and neck cancers”, Front Oncol., Vol. 9, No. 174, 2019. http://dx.doi.org/10.3389/fonc.2019.00174
Lu H, Ma X, Huang K, Azimi M., “Carbon trading volume and price forecasting in China using multiple machine learning models”, J Clean Prod., Vol. 249, Article No. 119386, 2020. http://dx.doi.org/10.1016/j.jclepro.2019.119386
Peng S, Wang W, Chen Y, Zhong X, Hu Q, “Regression-based hyperparameter learning for support vector machines”, IEEE Trans Neural Netw Learn Syst., Vol. 35, No. 12, pp. 18799–18813, 2024. http://dx.doi.org/10.1109/TNNLS.2023.3321685