Have a personal or library account? Click to login
Adaptive trust-based secure routing protocol with reinforced anomaly detection for IoT networks Cover

Adaptive trust-based secure routing protocol with reinforced anomaly detection for IoT networks

Open Access
|Jul 2025

References

  1. Muzammal, S. M., Murugesan, R. K., Jhanjhi, N., Hossain, M. S., & Yassine, A. (2022). Trust and mobility-based protocol for secure routing in Internet of Things. Sensors, 22(16), 6215. https://doi.org/10.3390/s22166215
  2. Muzammal, S. M., Murugesan, R. K., Jhanjhi, N. Z., Humayun, M., Ibrahim, A. O., & Abdelmaboud, A. (2022). A trust-based model for secure routing against RPL attacks in Internet of Things. Sensors, 22(18), 7052. https://doi.org/10.3390/s22187052
  3. Bang, A. O., & Rao, U. P. (2022). EMBOF-RPL: Improved RPL for early detection and isolation of rank attack in RPL-based Internet of Things. Peer-to-Peer Networking and Applications, 15, 642–665.
  4. Singh, J., Dhurandher, S. K., Woungang, I., & Chao, H.-C. (2024). Context-aware trust and reputation routing protocol for opportunistic IoT networks. Sensors, 24(23), 7650. https://doi.org/10.3390/s24237650
  5. Jiang, J., & Liu, Y. (2022). Secure IoT routing: Selective forwarding attacks and trust-based defenses in RPL network. arXiv preprint, arXiv:2201.06937.
  6. Rashidibajgan, S., Hupperich, T., Doss, R., & Förster, A. (2021). Secure and privacy-preserving structure in opportunistic networks. Computers & Security, 104, 102208.
  7. Cai, X., Shi, K., Sun, Y., Cao, J., Wen, S., & Tian, Z. (2023). Intelligent event-triggered control supervised by mini-batch machine learning and data compression mechanism for TS fuzzy NCSs under DoS attacks. IEEE Transactions on Fuzzy Systems, 32, 804–815.
  8. Sreenivasa, B. R., Lahza, H., Nandini, G., Shawly, T., Alsheikhy, A. A., Kumar, K. R. N., & Lahza, M. H. F. (2023). Social context-aware macroscopic routing scheme for opportunistic network. Transactions on Emerging Telecommunications Technologies, 34, e4844.
  9. Malik, R. A. (2023). A social relationship-based energy-efficient routing scheme for Opportunistic Internet of Things. ICT Express, 9, 697–705.
  10. Abadía, J. J. P., et al. (2022). A systematic survey of Internet of Things frameworks for smart city applications. Sustainable Cities and Society, 103949.
  11. Abosata, N., Al-Rubaye, S., & Inalhan, G. (2023). Customised intrusion detection for an industrial IoT heterogeneous network based on machine learning algorithms called FTL-CID. Sensors, 23(1), 321.
  12. Arshad, D., et al. (2022). THC-RPL: A lightweight trust-enabled routing in RPL-based IoT networks against Sybil attack. PLoS One, 17(7), e0271277.
  13. Gothawal, D. B., & Nagaraj, S. V. (2023). An intelligent and lightweight intrusion detection mechanism for RPL routing attacks by applying automata model. Information Security Journal: A Global Perspective, 32(1), 1–20.
  14. Ioulianou, P. P., Vassilakis, V. G., & Shahandashti, S. F. (2022). A trust-based intrusion detection system for RPL networks: Detecting a combination of rank and blackhole attacks. Journal of Cybersecurity and Privacy, 2(1), 124–153.
  15. Khan, A. B. F., Lalitha, H. R., Devi, S. K., & Rajalakshmi, C. N. (2022). A multi-attribute based trusted routing for embedded devices in MANET-IoT. Microprocessors and Microsystems, 89, 104446. https://doi.org/10.1016/j.micpro.2022.104446
  16. Ali, A. A., Hussain, M. M., & Rao, A. S. (2024). Enhancing security in the Internet of Things: A trust-based protocol for resilient communication. SN Computer Science, 5, 4. https://doi.org/10.1007/s42979-023-02329-4
  17. Khan, A. B. F., Hussain, M. M., Devi, S. K., & Gunavathie, M. A. (2023). DDoS attack modeling and resistance using trust-based protocol for the security of Internet of Things. Journal of Engineering Research, 11(2), 100058. https://doi.org/10.1016/j.jer.2023.100058
  18. Mansour M., Gamal A., Ahmed A., said L., Herencsar A. E. N., and Soltan A., Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions, Energies. (2023) 16, no. 8, https://doi.org/10.3390/en16083465, 3465.
  19. Park H., Song S., Nguyen T., and Park L., Machine Learning for Internet of Things: Applications and Discussion, 2024 International Conference on Artificial Intelligence in Information and Communication, 2024.
  20. Shanmugapriya R. and Svn S. K., An Energy Efficient Swan Intelligent Based Clustering Technique (SICT) With Fuzzy Based Secure Routing Protocol in IoT, Peer-to-Peer Networking and Applications. (2024) 17, no. 4, 1830–1864, https://doi.org/10.1007/s12083-024-01670-6.
  21. Albinali H. and Azzedin F., Towards RPL Attacks and Mitigation Taxonomy: Systematic Literature Review Approach, IEEE Transactions on Network and Service Management. (2024) 21, no. 5, 5215– 5238, https://doi.org/10.1109/TNSM.2024.3386468.
  22. Burange A. W. and Deshmukh V. M., Trust Based Secured Routing System for Low Powered Networks, Journal of Integrated Science & Technology. (2023) 11.
  23. Krari A., Hajami A., and Jarmouni E., Detecting the RPL Version Number Attack in IoT Networks Using Deep Learning Models, International Journal of Advanced Computer Science and Applications. (2023) 14, no. 10, https://doi.org/10.14569/IJACSA.2023.0141065.
Language: English
Submitted on: Jan 10, 2025
Published on: Jul 14, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 K. Sangeetha, K. Arulanandam, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.