Have a personal or library account? Click to login
Deep reinforcement learning-based approach for control of Two Input–Two Output process control system Cover

Deep reinforcement learning-based approach for control of Two Input–Two Output process control system

Open Access
|Jul 2025

References

  1. Martinez-Piazuelo, Juan, Daniel E. Ochoa, Nicanor Quijano and Luis Felipe Giraldo. “A Multi-Critic Reinforcement Learning Method: An Application to Multi-Tank Water Systems.” IEEE Access 8 (2020): 173227–173238.
  2. Wameedh Riyadh Abdul-Adheem, Ibraheem Kasim Ibraheem, Decoupled control scheme for output tracking of a general industrial nonlinear MIMO system using improved active disturbance rejection scheme, Alexandria Engineering Journal, Volume 58, Issue 4,2019, Pages 1145–1156, ISSN 1110-0168
  3. Xu, Jin, Han Li, and Qingxin Zhang. 2023. “Multivariable Coupled System Control Method Based on Deep Reinforcement Learning” Sensors 23, no. 21: 8679.
  4. Ye L, Jiang P. Optimization control of the double-capacity water tank-level system using the deep deterministic policy gradient algorithm. Engineering Reports. 2023; 5(11): e12668.
  5. Almeida, Alexandre Marques de, Marcelo Kaminski Lenzi, and Ervin Kaminski Lenzi. 2020. “A Survey of Fractional Order Calculus Applications of Multiple-Input, Multiple-Output (MIMO) Process Control” Fractal and Fractional 4, no. 2: 22.
  6. Radac, Mircea-Bogdan, Radu-Emil Precup and Raul-Cristian Roman. “Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning.” ISA transactions 73 (2018): 227–238.
  7. Hajare, V.D., Patre, B.M., Khandekar, A.A. et al. Decentralized PID controller design for TITO processes with experimental validation. Int. J. Dynam. Control 5, 583–595 (2017).
  8. Silver David, Guy Lever, Nicolas Manfred Otto Heess, Thomas Degris, Daan Wierstra and Martin A. Riedmiller. “Deterministic Policy Gradient Algorithms.” International Conference on Machine Learning (2014).
  9. M. D. L. Reddy, P. K. Padhy and I. Ahmad Ansari, “Auto-tuning Method for decentralized PID controller of TITO systems using firefly algorithm,” 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 2019, pp. 683–688.
  10. Khalid, Junaid & Anwari, Makbul & Khan, Muhammad & Hidayat, T. (2022). Efficient Load Frequency Control of Renewable Integrated Power System: A Twin Delayed DDPG-Based Deep Reinforcement Learning Approach. IEEE Access. 10. 1–1.
  11. Ould Mohamed and Mohamed Vall, Design of Decoupled PI Controllers for Two-Input Two-Output Networked Control Systems with Intrinsic and Network-Induced Time Delays. Acta Mechanica et Automatica, 15, 201–208, December 2021.
  12. Reshma N. Pawar and Sharad P. Jadhav Design of NDT and PSO based Decentralized PID Controller for Wood-Berry Distillation Column IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017).
  13. Wood RK, Berry MW (1973) Terminal composition control of a binary distillation column. Chem Eng Sci 28(9):1707–1717.
  14. Tavakoli S, Griffin I, Fleming PJ (2006) Tuning of decentralized PI(PID) controllers for TITO processes. Control Eng Pract 14(9):1069–1080.
  15. Qiu C, Hu Y, Chen Y, Zeng B. Deep deterministic policy gradient (DDPG)-based energy harvesting wireless communications. IEEE Internet Things J. 2019;6(5):8577–8588.
  16. Yan, Z., & Xu, Y. (2020). A Multi-Agent Deep Reinforcement Learning Method for Cooperative Load Frequency Control of a Multi-Area Power System. IEEE Transactions on Power Systems, 35, 4599–4608.
  17. Skiparev, V., Belikov, J., Petlenkov, E., & Levron, Y. (2022). Reinforcement Learning based MIMO Controller for Virtual Inertia Control in Isolated Microgrids. 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 1–5.
  18. Du, Y., Zandi, H., Kotevska, O., Kurte, K., Munk, J., Amasyali, K., Mckee, E., & Li, F. (2021). Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning. Applied Energy, 281, 116117.
  19. Ho, T, Tat, T, Ngo, H., Nguyen, T, Bui, D., Le, T., Le, V, & Huynh, L. (2023). Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart. Robotica & Management.
  20. Wang, Q-G., Zou, B., Lee, TH., Bi, Q. (1997). Auto-tuning of multivariable PID controllers from decentralized relay feedback. Automatica, 33(3):319–30.
  21. A. Alharin, T.-N. Doan, and M. Sartipi, “Reinforcement Learning Interpretation Methods: A Survey,” IEEE Access, vol. 8, pp. 171058–171077, 2020.
  22. T. M. Luu and C. D. Yoo, “Hindsight Goal Ranking on Replay Buffer for Sparse Reward Environment,” IEEE Access, vol. 9, pp. 51996–52007, Mar. 2021.
  23. Kiran, M. and Ozyildirim, M. Hyperparameter Tuning for Deep Reinforcement Learning Applications. arXiv: 2201.11182. (2022).
  24. Felten, F, Gareev, D, Talbi, E.G. and Danoy, G. Hyperparameter Optimization for Multi-Objective Reinforcement Learning. arXiv: 2310.16487.(2023).
Language: English
Submitted on: Mar 1, 2025
Published on: Jul 1, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Anil Kadu, Aniket Khandekar, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.