Have a personal or library account? Click to login
Change detection in synthetic aperture radar images using spatial fuzzy clustering based on the similarity matrix Cover

Change detection in synthetic aperture radar images using spatial fuzzy clustering based on the similarity matrix

Open Access
|Jul 2025

References

  1. Lu, D., Mausel, P., Brondízio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25, 2365–2401 (2004). DOI: 10.1080/0143116031000139863.
  2. Bruzzone, L., Prieto, D.F.: An adaptive semi parametric and context-based approach to unsupervised change detection in multi-temporal remote-sensing images. IEEE Transactions on Image Processing. 11, 452–466 (2002). DOI: 10.1109/TIP.2002.999678.
  3. Gong, M., Zhao, J., Liu, J., Miao, Q., Jiao, L.: Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks. IEEE Trans Neural Network Learn Syst. 27, 125–138 (2016). DOI: 10.1109/TNNLS.2015.2435783.
  4. Gao, Y., Gao, F., Dong, J., Li, H.-C.: SAR Image Change Detection Based on Multiscale Capsule Network. IEEE Geoscience and Remote Sensing Letters. 18, 484–488 (2021). DOI: 10.1109/LGRS.2020.2977838.
  5. Cheng, Y., Zhao, L., Chen, S., Li, X.: Hyperspectral Unmixing Network Accounting for Spectral Variability Based on a Modified Scaled and a Perturbed Linear Mixing Model. Remote Sens (Basel). 15, 3890 (2023). DOI: 10.3390/rs15153890.
  6. Bazi, Y., Bruzzone, L., Melgani, F.: Automatic Identification of the Number and Values of Decision Thresholds in the Log-Ratio Image for Change Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters. 3, 349–353 (2006). DOI: 10.1109/LGRS.2006.869973.
  7. Geng, J., Ma, X., Zhou, X., Wang, H.: Saliency-Guided Deep Neural Networks for SAR Image Change Detection. IEEE Transactions on Geoscience and Remote Sensing. 57, 7365–7377 (2019). DOI: 10.1109/TGRS.2019.2913095.
  8. Inglada, J., Mercier, G.: A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis. IEEE Transactions on Geoscience and Remote Sensing. 45, 1432–1445 (2007). DOI: 10.1109/TGRS.2007.893568.
  9. Du, Y., Zhong, R., Li, Q., Zhang, F.: TransUNet++SAR: Change Detection with Deep Learning about Architectural Ensemble in SAR Images. Remote Sens (Basel). 15, 6 (2022). DOI: 10.3390/rs15010006.
  10. Samadi, F., Akbarizadeh, G., Kaabi, H.: Change detection in SAR images using deep belief net-work: a new training approach based on morphological images. IET Image Process. 13, 2255–2264 (2019). DOI: 10.1049/iet-ipr.2018.6248.
  11. Gong, M., Li, Y., Jiao, L., Jia, M., Su, L.: SAR change detection based on intensity and texture changes. ISPRS Journal of Photogrammetry and Remote Sensing. 93, 123–135 (2014). DOI: 10.1016/j.isprsjprs.2014.04.010.
  12. Adegun, A.A., Viriri, S., Tapamo, J.-R.: Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis. J Big Data. 10, 93 (2023). DOI: 10.1186/s40537-023-00772-x.
  13. Wang, P., Zhang, H., Patel, V.M.: SAR Image Despeckling Using a Convolutional Neural Network. IEEE Signal Process Lett. 24, 1763–1767 (2017). DOI: 10.1109/LSP.2017.2758203.
  14. Ramos, L.P., Costa, R.F. da, Medeiros, D. da S. de, Silva, P.B. da, Alves, D.I., Machado, R.: On the Effect of Imperfect Reference Images in SAR Change Detection Based on Bayes' Theorem. In: Anais do XL Simpósio Brasileiro de Telecomunicações e Processamento de Sinais. Sociedade Brasileira de Telecomunicações (2022). DOI: 10.14209/sbrt.2022.1570813069.
  15. Pollisetty Pravallika: Ship Tracking and Detection in SAR images using Deep Learning model. International Journal of Creative Research Thoughts. Vol. 10, (2022)
  16. Huiqin Chen, Fujun Zhao, Zeyuan Gu: SAR Image Change Detection Re-search: A Review. clausiuspress-Geoscience and Remote Sensing. Vol. 5, (2022).
  17. Shafique, A., Cao, G., Khan, Z., Asad, M., Aslam, M.: Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sens (Basel). 14, 871 (2022). DOI: 10.3390/rs14040871.
  18. Bai, T., Wang, L., Yin, D., Sun, K., Chen, Y., Li, W., Li, D.: Deep learning for change detection in remote sensing: a review. Geo-spatial Information Science. 26, 262–288 (2023). DOI: 10.1080/10095020.2022.208 5633.
  19. Khelifi, L., Mignotte, M.: Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis. IEEE Access. 8, 126385–126400 (2020). DOI: 10.1109/ACCESS.2020.3008036.
  20. Li, L., Ma, H., Zhang, X., Zhao, X., Lv, M., Jia, Z.: Synthetic Aperture Radar Image Change Detection Based on Principal Component Analysis and Two-Level Clustering. Remote Sens (Basel). 16, 1861 (2024). DOI: 10.3390/rs16111861.
  21. Zhan, T., Dang, Q., Zhu, Y.: Neighborhood Difference-Based Self-Supervised Network for Detecting Small Changes From Synthetic Aperture Radar Images. IEEE Geoscience and Remote Sensing Letters. 21, 1–5 (2024). DOI: 10.1109/LGRS.2024.3415819.
Language: English
Submitted on: Mar 7, 2025
|
Published on: Jul 19, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Tushar Zanke, Stuti Jagtap, Samrudhi Wath, Snehashish Mulgir, Archana Chaudhari, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.