Have a personal or library account? Click to login
Automatic detection of technical debt in large-scale java codebases: a multi-model deep learning methodology for enhanced software quality Cover

Automatic detection of technical debt in large-scale java codebases: a multi-model deep learning methodology for enhanced software quality

Open Access
|Mar 2025

References

  1. D. Tsoukalas, “Machine learning for technical debt identification,” IEEE Transactions on Software Engineering, p. 1, Jan. 2021, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/tse.2021.3129355" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/tse.2021.3129355</a></pub-id>.
  2. Y. Li, M. Soliman, and P. Avgeriou, “Identification and Remediation of Self-Admitted Technical Debt in Issue Trackers,” 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 495–503, Aug. 2020, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/seaa51224.2020.00083" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/seaa51224.2020.00083</a></pub-id>.
  3. Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “SATD detector,” 2018 IEEE/ACM 40th International Conference on Software Engineering, May 2018, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1145/3183440.3183478" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3183440.3183478</a></pub-id>.
  4. J. Tan, D. Feitosa and P. Avgeriou, “The life-cycle of Technical Debt that manifests in both source code and issue trackers”, Information and Software Technology, Volume 159, 2023, 107216, ISSN 0950-5849, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.infsof.2023.107216" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.infsof.2023.107216</a></pub-id>.
  5. L. Xavier, F. Ferreira, R. Brito and M. Valente, “Beyond the Code: Mining Self-Admitted Technical Debt in Issue Tracker Systems,” in 2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR), Seoul, Korea, Republic of, 2020 pp. 137–146. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1145/3379597.3387459" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3379597.3387459</a></pub-id>
  6. W. S. Tan, M. Wagner, and C. Treude, “Detecting outdated code element references in software repository documentation,” arXiv (Cornell University), Jan. 2022, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.48550/arxiv.2212.01479" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.48550/arxiv.2212.01479</a></pub-id>.
  7. Y. Li, M. Soliman, and P. Avgeriou, “Automatic identification of self-admitted technical debt from four different sources,” Empirical Software Engineering, vol. 28, no. 3, Apr. 2023, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10664-023-10297-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10664-023-10297-9</a></pub-id>.
  8. F. Zampetti, A. Serebrenik and M. Di Penta, “Automatically Learning Patterns for Self-Admitted Technical Debt Removal,” in 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), London, ON, Canada, 2020 pp. 355–366. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/SANER48275.2020.9054868" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/SANER48275.2020.9054868</a></pub-id>
  9. P. Bagane, C. Sengar, S. Dongre, S. Prabhakar, S. Baldua, and S. Gurav, ‘Total Electron Content Forecasting in Low Latitude Regions of India: Machine and Deep Learning Synergy’, Communications in Computer and Information Science, vol. 2054 CCIS, pp. 104–119, 2024. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/978-3-031-56703-2_9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-031-56703-2_9</a></pub-id>
  10. P. Bagane, M. Thawani, P. Singh, R. Ahmad, R. Mital, and O. A. Jebessa, ‘Breaking the Silence: An innovative ASL to Text Conversion System Leveraging Computer Vision &amp; Machine Learning for Enhanced Communication’, International Journal of Intelligent Systems and Applications in Engineering, vol. 12, no. 14s, pp. 246–255, 2024.
  11. E. Gama, S. Freire, M. Mendonça, R. O. Spínola, M. Paixao, and M. I. Cortés, ‘Using Stack Overflow to Assess Technical Debt Identification on Software Projects’. In Proceedings of the XXXIV Brazilian Symposium on Software Engineering (SBES ‘20). Association for Computing Machinery, New York, NY, USA, 2020, pp. 730–739. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1145/3422392.3422429" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/3422392.3422429</a></pub-id>
  12. F. Bi, B. Vogel-Heuser, Z. Huang, F. Ocker ‘Characteristics, causes, and consequences of technical debt in the automation domain’, Journal of Systems and Software, vol. 204, 2023. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jss.2023.111725" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jss.2023.111725</a></pub-id>
  13. C. Jaspan and C. Green, “Defining, Measuring, and Managing Technical Debt,” in IEEE Software, vol. 40, no. 3, pp. 15–19, May–June 2023, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/MS.2023.3242137" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/MS.2023.3242137</a></pub-id>.
  14. D. Pina, A. Goldman and G. Tonin, “Technical Debt Prioritization: Taxonomy, Methods Results, and Practical Characteristics,” 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Palermo, Italy, 2021, pp. 206–213, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/SEAA53835.2021.00034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/SEAA53835.2021.00034</a></pub-id>.
  15. J. S. De Jesus and A. C. V. De Melo, “Technical Debt and the Software Project Characteristics. A Repository-Based Exploratory Analysis,” 2017 IEEE 19th Conference on Business Informatics (CBI), Thessaloniki, Greece, pp. 444–453, Jul. 2017, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/cbi.2017.62" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/cbi.2017.62</a></pub-id>.
Language: English
Submitted on: Jan 10, 2025
Published on: Mar 25, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Pooja Bagane, Chahak Sengar, Sumedh Dongre, Siddharth Prabhakar, Obsa Amenu Jebessa, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.