References
- Meena Pundir and Jasminder Sandhu, A systematic Review of Quality of Services in Wireless Sensor Networks using Machine Learning: Recent Trend and Future Vision, Journal of Network and Computer Applications, 188, (2021). DOI: 10.1016/j.jnca.2021.103084.
- Padmalaya Naya, G. K. Swetha, Surbhi Gupta, K. Madhavi, Routing in wireless sensor networks using machine learning techniques: Challenges and opportunities, Measurements, 178, (2021). DOI: 10.1016/j.measurement.2021.108974.
- Praveen Kumar D, Tarachand Amgoth, Chandra Sekhara Rao Annavarapu, Machine learning algorithms for wireless sensor networks: A survey, Information Fusion (2018). DOI: 10.1016/j.inffus.2018.09.013
- Raja Basha, A. A Review on Wireless Sensor Networks: Routing. Wireless Personal Communication 125, 897–937 (2022). DOI: 10.1007/s11277-022-09583-4
- Pantazis, N.A.; Nikolidakis, S.A.; Vergados, D.D. Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 551–591. [CrossRef]
- Jingjing, Y.; Mengchu, Z.; Zhijun, D. Recent advances in energy-efficient routing protocols for wireless sensor networks: A review. IEEE Access 2016, 4, 5673–5686.
- Mohamed, R.E.; Saleh, A.I.; Abdelrazzak, M.; Samra, A.S. Survey on wireless sensor network applications and energy efficient routing protocols. Wirel. Pers. Commun. 2018, 101, 1019–1055. [CrossRef]
- C. Nakas, D. Kandris, and G. Visvardis, “Energy efficient routing in wireless sensor networks: A comprehensive survey,” Algorithms, vol. 13, no. 3, p. 72, Mar. 2020, doi: 10.3390/a13030072
- M. Shaq, H. Ashraf, A. Ullah, and S. Tahira, “Systematic literature review on energy efficient routing schemes in WSN: A survey,” Mobile Netw. Appl., vol. 25, no. 3, pp. 882895, Feb. 2020, doi: 10.1007/s11036-020-01523-5.
- Ehsan Ahvar, Shohreh Ahvar, Gyu Myoung Lee, Noel Crespi, “An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks”, The Scientific World Journal, vol. 2014, Article ID 359897, 9 pages, 2014. DOI: 10.1155/2014/359897
- Ding, Q.; Zhu, R.; Liu, H.; Ma, M. An Overview of Machine Learning-Based Energy-Efficient Routing Algorithms in Wireless Sensor Networks. Electronics 2021, 10, 1539. DOI: 10.3390/electronics10131539.
- X. Su, Y. Ren, Z. Cai, Y. Liang and L. Guo, “A Q-Learning-Based Routing Approach for Energy Efficient Information Transmission in Wireless Sensor Network,” in IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1949–1961, June 2023, doi: 10.1109/TNSM.2022.3218017.
- S. Z. Jafarzadeh and M. H. Y. Moghaddam, “Design of energy-aware QoS routing protocol in wireless sensor networks using reinforcement learning,” 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–5, (2014), 10.1109/CCECE.2014.6900988.
- G. Oddi, A. Pietrabissa, and F. Liberati, “Energy balancing in multihop wireless sensor networks: An approach based on reinforcement learning,” in Proc. NASA/ESA Conf. Adapt. Hardw. Syst. (AHS), 2014, pp. 262–269.
- Kiani F, Amiri E, Zamani M, et al. Efficient intelligent energy routing protocol in wireless sensor networks. Int J Distrib Sens N vol.5, issue 27, (2015), DOI: 10.1155/2015/618072.
- X. Li, X. Hu, W. Li, and H. Hu, “A multi-agent reinforcement learning routing protocol for underwater optical sensor networks,” in Proc. IEEE Int. Conf. Commun. (ICC), 2019, pp. 1–7.
- W. Guo, C. Yan, and T. Lu, “Optimizing the lifetime of wireless sensor networks via reinforcement-learning-based routing,” Int. J. Distrib. Sens. Netw., vol. 15, no. 2, 2019, Art. no. 155014771983354.
- W. -K. Yun and S. -J. Yoo, “Q-Learning-Based Data-Aggregation-Aware Energy-Efficient Routing Protocol for Wireless Sensor Networks,” in IEEE Access, vol. 9, pp. 10737–10750, 2021, doi: 10.1109/ACCESS.2021.3051360.
- ViallyKazadi Mutombo, Seungyeon Lee, Jusuk Lee, and Jiman Hong, EER-RL: Energy-Efficient Routing Based on Reinforcement Learning, Mobile Information Systems Volume 2021, DOI: 10.1155/2021/5589145.
- Ranjita Joon, Parul Tomar, Energy Aware Q-learning AODV (EAQ-AODV) routing for cognitive radio sensor networks, Journal of King Saud University - Computer and Information Sciences, Volume 34, Issue 9, 2022, pp. 6989–7000, DOI: 10.1016/j.jksuci.2022.03.021.
- X. Su, Y. Ren, Z. Cai, Y. Liang and L. Guo, A Q-Learning-Based Routing Approach for Energy Efficient Information Transmission in Wireless Sensor Network, IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1949–1961, June 2023, doi: 10.1109/TNSM.2022.3218017.
- Maivizhi, R., Yogesh, P. Q-learning based routing for in-network aggregation in wireless sensor networks. Wireless Networks 27, 2231–2250, 2021. DOI: 10.1007/s11276-021-02564-8.
- W. -K. Yun and S. -J. Yoo, Q-Learning-Based Data-Aggregation-Aware Energy-Efficient Routing Protocol for Wireless Sensor Networks, IEEE Access, vol. 9, pp. 10737–10750, 2021. doi: 10.1109/ACCESS.2021.3051360.
- J. A. Boyan and M. L. Littman, Packet routing in dynamically changing networks: A reinforcement learning approach, in Proc. Neural Inf. Process. Syst. Conf. (NIPS), pp. 671–678, (1994), 10.5555/2987189.2987274