Have a personal or library account? Click to login
Energy-efficient Q-learning-based routing in wireless sensor networks Cover

Energy-efficient Q-learning-based routing in wireless sensor networks

Open Access
|Feb 2025

References

  1. Meena Pundir and Jasminder Sandhu, A systematic Review of Quality of Services in Wireless Sensor Networks using Machine Learning: Recent Trend and Future Vision, Journal of Network and Computer Applications, 188, (2021). DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jnca.2021.103084" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jnca.2021.103084</a></pub-id>.
  2. Padmalaya Naya, G. K. Swetha, Surbhi Gupta, K. Madhavi, Routing in wireless sensor networks using machine learning techniques: Challenges and opportunities, Measurements, 178, (2021). DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.measurement.2021.108974" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.measurement.2021.108974</a></pub-id>.
  3. Praveen Kumar D, Tarachand Amgoth, Chandra Sekhara Rao Annavarapu, Machine learning algorithms for wireless sensor networks: A survey, Information Fusion (2018). DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.inffus.2018.09.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.inffus.2018.09.013</a></pub-id>
  4. Raja Basha, A. A Review on Wireless Sensor Networks: Routing. Wireless Personal Communication 125, 897–937 (2022). DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11277-022-09583-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11277-022-09583-4</a></pub-id>
  5. Pantazis, N.A.; Nikolidakis, S.A.; Vergados, D.D. Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 551–591. [CrossRef]
  6. Jingjing, Y.; Mengchu, Z.; Zhijun, D. Recent advances in energy-efficient routing protocols for wireless sensor networks: A review. IEEE Access 2016, 4, 5673–5686.
  7. Mohamed, R.E.; Saleh, A.I.; Abdelrazzak, M.; Samra, A.S. Survey on wireless sensor network applications and energy efficient routing protocols. Wirel. Pers. Commun. 2018, 101, 1019–1055. [CrossRef]
  8. C. Nakas, D. Kandris, and G. Visvardis, “Energy efficient routing in wireless sensor networks: A comprehensive survey,” Algorithms, vol. 13, no. 3, p. 72, Mar. 2020, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/a13030072" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/a13030072</a></pub-id>
  9. M. Shaq, H. Ashraf, A. Ullah, and S. Tahira, “Systematic literature review on energy efficient routing schemes in WSN: A survey,” Mobile Netw. Appl., vol. 25, no. 3, pp. 882895, Feb. 2020, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11036-020-01523-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11036-020-01523-5</a></pub-id>.
  10. Ehsan Ahvar, Shohreh Ahvar, Gyu Myoung Lee, Noel Crespi, “An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks”, The Scientific World Journal, vol. 2014, Article ID 359897, 9 pages, 2014. DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1155/2014/359897" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2014/359897</a></pub-id>
  11. Ding, Q.; Zhu, R.; Liu, H.; Ma, M. An Overview of Machine Learning-Based Energy-Efficient Routing Algorithms in Wireless Sensor Networks. Electronics 2021, 10, 1539. DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/electronics10131539" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/electronics10131539</a></pub-id>.
  12. X. Su, Y. Ren, Z. Cai, Y. Liang and L. Guo, “A Q-Learning-Based Routing Approach for Energy Efficient Information Transmission in Wireless Sensor Network,” in IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1949–1961, June 2023, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/TNSM.2022.3218017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TNSM.2022.3218017</a></pub-id>.
  13. S. Z. Jafarzadeh and M. H. Y. Moghaddam, “Design of energy-aware QoS routing protocol in wireless sensor networks using reinforcement learning,” <em>2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE)</em>, pp. 1–5, (2014), <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/CCECE.2014.6900988" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CCECE.2014.6900988</a></pub-id>.
  14. G. Oddi, A. Pietrabissa, and F. Liberati, “Energy balancing in multihop wireless sensor networks: An approach based on reinforcement learning,” in Proc. NASA/ESA Conf. Adapt. Hardw. Syst. (AHS), 2014, pp. 262–269.
  15. Kiani F, Amiri E, Zamani M, et al. Efficient intelligent energy routing protocol in wireless sensor networks. Int J Distrib Sens N vol.5, issue 27, (2015), DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1155/2015/618072" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2015/618072</a></pub-id>.
  16. X. Li, X. Hu, W. Li, and H. Hu, “A multi-agent reinforcement learning routing protocol for underwater optical sensor networks,” in Proc. IEEE Int. Conf. Commun. (ICC), 2019, pp. 1–7.
  17. W. Guo, C. Yan, and T. Lu, “Optimizing the lifetime of wireless sensor networks via reinforcement-learning-based routing,” Int. J. Distrib. Sens. Netw., vol. 15, no. 2, 2019, Art. no. 155014771983354.
  18. W. -K. Yun and S. -J. Yoo, “Q-Learning-Based Data-Aggregation-Aware Energy-Efficient Routing Protocol for Wireless Sensor Networks,” in IEEE Access, vol. 9, pp. 10737–10750, 2021, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/ACCESS.2021.3051360" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ACCESS.2021.3051360</a></pub-id>.
  19. ViallyKazadi Mutombo, Seungyeon Lee, Jusuk Lee, and Jiman Hong, EER-RL: Energy-Efficient Routing Based on Reinforcement Learning, Mobile Information Systems Volume 2021, DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1155/2021/5589145" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2021/5589145</a></pub-id>.
  20. Ranjita Joon, Parul Tomar, Energy Aware Q-learning AODV (EAQ-AODV) routing for cognitive radio sensor networks, Journal of King Saud University - Computer and Information Sciences, Volume 34, Issue 9, 2022, pp. 6989–7000, DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jksuci.2022.03.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jksuci.2022.03.021</a></pub-id>.
  21. X. Su, Y. Ren, Z. Cai, Y. Liang and L. Guo, A Q-Learning-Based Routing Approach for Energy Efficient Information Transmission in Wireless Sensor Network, IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1949–1961, June 2023, doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/TNSM.2022.3218017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TNSM.2022.3218017</a></pub-id>.
  22. Maivizhi, R., Yogesh, P. Q-learning based routing for in-network aggregation in wireless sensor networks. Wireless Networks 27, 2231–2250, 2021. DOI: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s11276-021-02564-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11276-021-02564-8</a></pub-id>.
  23. W. -K. Yun and S. -J. Yoo, Q-Learning-Based Data-Aggregation-Aware Energy-Efficient Routing Protocol for Wireless Sensor Networks, IEEE Access, vol. 9, pp. 10737–10750, 2021. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1109/ACCESS.2021.3051360" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ACCESS.2021.3051360</a></pub-id>.
  24. J. A. Boyan and M. L. Littman, Packet routing in dynamically changing networks: A reinforcement learning approach, in Proc. Neural Inf. Process. Syst. Conf. (NIPS), pp. 671–678, (1994), <pub-id pub-id-type="doi"><a href="https://doi.org/10.5555/2987189.2987274" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5555/2987189.2987274</a></pub-id>
Language: English
Submitted on: Dec 12, 2024
Published on: Feb 24, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Archana Chaudhari, Vivek Deshpande, Divya Midhunchakkaravarthy, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.