References
- K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of LPWAN technologies for large-scale IoT deployment,” ICT Express, vol. 5, no. 1, 2019, doi: 10.1016/j.icte.2017.12.005.
- F. Sanchez-Sutil and A. Cano-Ortega, “Smart regulation and efficiency energy system for street lighting with LoRa LPWAN,” Sustain Cities Soc, vol. 70, 2021, doi: 10.1016/j.scs.2021.102912.
- G. Gupta and R. Van Zyl, “Energy harvested end nodes and performance improvement of LoRa networks,” International Journal on Smart Sensing and Intelligent Systems, vol. 14, no. 1, 2021, doi: 10.21307/IJSSIS-2021-002.
- R. S. Sinha, Y. Wei, and S. H. Hwang, “A survey on LPWA technology: LoRa and NB-IoT,” ICT Express, vol. 3, no. 1. 2017. doi: 10.1016/j.icte.2017.03.004.
- J. Peña Queralta, T. N. Gia, Z. Zou, H. Tenhunen, and T. Westerlund, “Comparative study of LPWAN technologies on unlicensed bands for M2M communication in the IoT: Beyond Lora and Lorawan,” in Procedia Computer Science, 2019. doi: 10.1016/j.procs.2019.08.049.
- G. Gupta and R. Van Zyl, “NOMA-Based LPWA Networks,” in Lecture Notes in Networks and Systems, 2022. doi: 10.1007/978-981-16-2126-0_42.
- G. Gupta, R. Van Zyl, and V. Balyan, “Evaluation of LoRa nodes for long-range communication,” Nonlinear Engineering, vol. 11, no. 1, 2022, doi: 10.1515/nleng-2022-0236.
- A. J. Onumanyi, A. M. Abu-Mahfouz, and G. P. Hancke, “Low power wide area network, cognitive radio and the internet of things: Potentials for integration,” Sensors (Switzerland), vol. 20, no. 23. 2020. doi: 10.3390/s20236837.
- A. C. Sumathi, R. Vidhyapriya, C. Vivekanandan, and A. K. Sangaiah, “Enhancing 4G Co-existence with Wi-Fi/IoT using cognitive radio,” Cluster Comput, vol. 22, 2019, doi: 10.1007/s10586-017-1383-5.
- L. Beltramelli, A. Mahmood, M. Gidlund, P. Osterberg, and U. Jennehag, “Interference Modelling in a Multi-Cell LoRa System,” in International Conference on Wireless and Mobile Computing, Networking and Communications, 2018. doi: 10.1109/WiMOB.2018.8589100.
- D. Magrin, M. Centenaro, and L. Vangelista, “Performance evaluation of LoRa networks in a smart city scenario,” in IEEE International Conference on Communications, 2017. doi: 10.1109/ICC.2017.7996384.
- M. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power wide-area networks scale?,” in MSWiM 2016 - Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2016. doi: 10.1145/2988287.2989163.
- P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A multi-channel software decoder for the LoRa modulation scheme,” in IoTBDS 2018 - Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security, 2018. doi: 10.5220/0006668400410051.
- M. Bor, J. Vidler, and U. Roedig, “Lora for the internet of things,” in International Conference on Embedded Wireless Systems and Networks, 2016.
- J. Petäjäjärvi, K. Mikhaylov, M. Pettissalo, J. Janhunen, and J. Iinatti, “Performance of a low-power wide-area network based on lora technology: Doppler robustness, scalability, and coverage,” Int J Distrib Sens Netw, vol. 13, no. 3, 2017, doi: 10.1177/1550147717699412.
- L. Vangelista, “Frequency Shift Chirp Modulation: The LoRa Modulation,” IEEE Signal Process Lett, vol. 24, no. 12, 2017, doi: 10.1109/LSP.2017.2762960.
- C. H. Liao, G. Zhu, D. Kuwabara, M. Suzuki, and H. Morikawa, “Multi-Hop LoRa Networks Enabled by Concurrent Transmission,” IEEE Access, vol. 5, 2017, doi: 10.1109/ACCESS.2017.2755858.
- M. S. Khan, S. M. Kim, E. H. Lee, and J. Kim, “Genetic Algorithm Based Cooperative Spectrum Sensing Optimization in the Presence of Malicious Users in Cognitive Radio Networks,” in ICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future, 2019. doi: 10.1109/ICTC46691.2019.8939859.
- J. Chen, S. Huang, H. Li, X. Lv, and Y. Cai, “PSO-Based Agent Cooperative Spectrum Sensing in Cognitive Radio Networks,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2944227.
- M. S. Hossain and M. S. Miah, “Machine learning-based malicious user detection for reliable cooperative radio spectrum sensing in Cognitive Radio-Internet of Things,” Machine Learning with Applications, vol. 5, 2021, doi: 10.1016/j.mlwa.2021.100052.