Have a personal or library account? Click to login
Resource Management for Cognitive Radio-Based LoRaWAN Cover
By: Vipin Balyan  
Open Access
|Dec 2024

References

  1. K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of LPWAN technologies for large-scale IoT deployment,” ICT Express, vol. 5, no. 1, 2019, doi: 10.1016/j.icte.2017.12.005.
  2. F. Sanchez-Sutil and A. Cano-Ortega, “Smart regulation and efficiency energy system for street lighting with LoRa LPWAN,” Sustain Cities Soc, vol. 70, 2021, doi: 10.1016/j.scs.2021.102912.
  3. G. Gupta and R. Van Zyl, “Energy harvested end nodes and performance improvement of LoRa networks,” International Journal on Smart Sensing and Intelligent Systems, vol. 14, no. 1, 2021, doi: 10.21307/IJSSIS-2021-002.
  4. R. S. Sinha, Y. Wei, and S. H. Hwang, “A survey on LPWA technology: LoRa and NB-IoT,” ICT Express, vol. 3, no. 1. 2017. doi: 10.1016/j.icte.2017.03.004.
  5. J. Peña Queralta, T. N. Gia, Z. Zou, H. Tenhunen, and T. Westerlund, “Comparative study of LPWAN technologies on unlicensed bands for M2M communication in the IoT: Beyond Lora and Lorawan,” in Procedia Computer Science, 2019. doi: 10.1016/j.procs.2019.08.049.
  6. G. Gupta and R. Van Zyl, “NOMA-Based LPWA Networks,” in Lecture Notes in Networks and Systems, 2022. doi: 10.1007/978-981-16-2126-0_42.
  7. G. Gupta, R. Van Zyl, and V. Balyan, “Evaluation of LoRa nodes for long-range communication,” Nonlinear Engineering, vol. 11, no. 1, 2022, doi: 10.1515/nleng-2022-0236.
  8. A. J. Onumanyi, A. M. Abu-Mahfouz, and G. P. Hancke, “Low power wide area network, cognitive radio and the internet of things: Potentials for integration,” Sensors (Switzerland), vol. 20, no. 23. 2020. doi: 10.3390/s20236837.
  9. A. C. Sumathi, R. Vidhyapriya, C. Vivekanandan, and A. K. Sangaiah, “Enhancing 4G Co-existence with Wi-Fi/IoT using cognitive radio,” Cluster Comput, vol. 22, 2019, doi: 10.1007/s10586-017-1383-5.
  10. L. Beltramelli, A. Mahmood, M. Gidlund, P. Osterberg, and U. Jennehag, “Interference Modelling in a Multi-Cell LoRa System,” in International Conference on Wireless and Mobile Computing, Networking and Communications, 2018. doi: 10.1109/WiMOB.2018.8589100.
  11. D. Magrin, M. Centenaro, and L. Vangelista, “Performance evaluation of LoRa networks in a smart city scenario,” in IEEE International Conference on Communications, 2017. doi: 10.1109/ICC.2017.7996384.
  12. M. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power wide-area networks scale?,” in MSWiM 2016 - Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2016. doi: 10.1145/2988287.2989163.
  13. P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A multi-channel software decoder for the LoRa modulation scheme,” in IoTBDS 2018 - Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security, 2018. doi: 10.5220/0006668400410051.
  14. M. Bor, J. Vidler, and U. Roedig, “Lora for the internet of things,” in International Conference on Embedded Wireless Systems and Networks, 2016.
  15. J. Petäjäjärvi, K. Mikhaylov, M. Pettissalo, J. Janhunen, and J. Iinatti, “Performance of a low-power wide-area network based on lora technology: Doppler robustness, scalability, and coverage,” Int J Distrib Sens Netw, vol. 13, no. 3, 2017, doi: 10.1177/1550147717699412.
  16. L. Vangelista, “Frequency Shift Chirp Modulation: The LoRa Modulation,” IEEE Signal Process Lett, vol. 24, no. 12, 2017, doi: 10.1109/LSP.2017.2762960.
  17. C. H. Liao, G. Zhu, D. Kuwabara, M. Suzuki, and H. Morikawa, “Multi-Hop LoRa Networks Enabled by Concurrent Transmission,” IEEE Access, vol. 5, 2017, doi: 10.1109/ACCESS.2017.2755858.
  18. M. S. Khan, S. M. Kim, E. H. Lee, and J. Kim, “Genetic Algorithm Based Cooperative Spectrum Sensing Optimization in the Presence of Malicious Users in Cognitive Radio Networks,” in ICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future, 2019. doi: 10.1109/ICTC46691.2019.8939859.
  19. J. Chen, S. Huang, H. Li, X. Lv, and Y. Cai, “PSO-Based Agent Cooperative Spectrum Sensing in Cognitive Radio Networks,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2944227.
  20. M. S. Hossain and M. S. Miah, “Machine learning-based malicious user detection for reliable cooperative radio spectrum sensing in Cognitive Radio-Internet of Things,” Machine Learning with Applications, vol. 5, 2021, doi: 10.1016/j.mlwa.2021.100052.
Language: English
Submitted on: Jul 17, 2024
Published on: Dec 17, 2024
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Vipin Balyan, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.