Have a personal or library account? Click to login
Feasibility analysis of wireless power delivery to implanted sensors of XLIF patients Cover

Feasibility analysis of wireless power delivery to implanted sensors of XLIF patients

Open Access
|Sep 2024

References

  1. R. J. Mobbs, K. Phan, G. Malham, K. Seex and P. J. Rao, “Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF,” Journal of Spine Surgery, vol. 1, no. 1, p. 2–18, 2015.
  2. D. Hoy, C. Bain, G. Williams, L. March, P. Brooks, F. Blyth, A. Woolf, T. Vos and R. Buchbinder, “A systematic review of the global prevalence of low back pain,” Arthritis and Rheumatism, vol. 64, no. 6, pp. 2028–2037, 2012.
  3. J. W. Frymoyer, “Back pain and sciata,” The New England Journal of Medicine, vol. 218, no. 5, pp. 291–300, 1988.
  4. J. B. Dillane, J. Fry and G. Kalton, “Acute Back Syndrome—A Study from General Practice,” BMJ, vol. 2, no. 5505, pp. 82–84, 1966.
  5. D. K. Resnick, T. F. Choudhri, A. T. Dailey, M. W. Groff, L. Khoo, P. G. Matz, P. Mummaneni, W. C. Watters III, J. Wang, B. C. Walters and M. N. Hadley, “Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 7: intractable low-back pain without stenosis or spondylolisthesis,” Journal of Neurosurgery: Spine, vol. 2, no. 6, pp. 670–672, 2005.
  6. B. I. Martin, S. K. Mirza, N. Spina, W. R. Spiker, B. Lawrence and D. S. Brodke, “Trends in Lumbar Fusion Procedure Rates and Associated Hospital Costs for Degenerative Spinal Diseases in the United States, 2004 to 2015,” Spine, vol. 44, no. 5, p. 369–376, 2019.
  7. R. A. Deyo, D. Cherkin, D. Conrad and E. Volinn, “Cost, controversy, crisis: low back pain and the health of the public,” Annual Review of Public Health, vol. 12, no. 1, p. 141–156, 1991.
  8. H. Briggs and P. R. Milligan, “Chip fusion of the low back following exploration of the spinal canal,” The Journal of Bone & Joint Surgery, vol. 26, no. 1, pp. 125–130, 1944.
  9. B. M. Ozgur, H. E. Aryan, L. Pimenta and W. R. Taylor, “Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion,” The Spine Journal, vol. 6, no. 4, p. 435–443, 2006.
  10. G. M. Malham, N. J. Ellis, R. M. Parker, C. M. Blecher, R. White, B. Goss and K. A. Seex, “Maintenance of segmental lordosis and disk height in stand-alone and instrumented extreme lateral interbody fusion (XLIF),” Clinical Spine Surgery, vol. 30, no. 2, pp. 90–98, 2017.
  11. M. Si, J. Guo, J. Hao, X. Zhao, C. A. Randall and H. Wang, “Cold sintered composites consisting of PEEK metal oxides with improved electrical properties via the hybrid interfaces,” Composites. Part B, Engineering, vol. 226, p. 109349, 2021.
  12. E. Massaad, N. Fatima, A. Kiapour, M. Hadzipasic, G. M. Shankar and J. H. Shin, “Polyetheretherketone Versus Titanium Cages for Posterior Lumbar Interbody Fusion: Meta-Analysis and Review of the Literature,” Neurospine, vol. 17, no. 1, pp. 125–135, 2020.
  13. M.-C. Kim, H.-T. Chung, J.-L. Cho, D.-J. Kim and N.-S. Chung, “Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion,” Journal of Spinal Disorders & Techniques, vol. 26, no. 2, pp. 87–92, 2013.
  14. F. Galbusera, D. Volkheimer, S. Reitmaier, N. Berger-Roscher, A. Kienle and H.-J. Wilke, “Pedicle screw loosening: a clinically relevant complication?,” European Spine Journal, vol. 24, no. 5, pp. 1005–1016, 2015.
  15. C. Herren, R. M. Simons, J. Bredow, S. Oikonomidis, L. Westermann, R. Sobottke, M. J. Scheyerer, M. Pishnamaz, P. Eysel, K. Zarghooni, J. Franklin and J. Siewe, “Posterior Lumbar Interbody Fusion versus Dynamic Hybrid Instrumentation: A Prospective Randomized Clinical Trial,” World Neurosurgery, vol. 117, p. e228–e237, 2018.
  16. D. S. Chun, K. C. Baker and W. K. Hsu, “Lumbar pseudarthrosis: a review of current diagnosis and treatment,” Neurosurgical Focus, vol. 39, no. 4, p. E10, 2015.
  17. P. Berjano, F. Langella, M. Damilano, M. Pejrona, J. Buric, M. Ismael, J. H. Villafañe and C. Lamartina, “Fusion rate following extreme lateral lumbar interbody fusion,” European Spine Journal, vol. 24, pp. 369–371, 2015.
  18. B. Meng, J. Bunch, D. Burton and J. Wang, “Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies,” European Spine Journal, vol. 30, no. 1, pp. 22–33, 2021.
  19. W. K. Hsu, M. S. Nickoli, J. C. Wang, J. R. Lieberman, H. S. An, S. T. Yoon, J. A. Youssef, D. S. Brodke and C. M. McCullough, “Improving the Clinical Evidence of Bone Graft Substitute Technology in Lumbar Spine Surgery,” Global Spine Journal, vol. 2, no. 4, p. 239–248, 2012.
  20. E. Klineberg, M. Gupta, I. McCarthy and R. Hostin, “Detection of Pseudarthrosis in Adult Spinal Deformity: The Use of Health-related Quality-of-life Outcomes to Predict Pseudarthrosis,” Clinical Spine Surgery, vol. 29, no. 8, pp. 318–322, 2016.
  21. L. Y. Carreon, S. D. Glassman, J. D. Schwender, B. R. Subach, M. F. Gornet and S. Ohno, “Reliability and accuracy of fine-cut computed tomography scans to determine the status of anterior interbody fusions with metallic cages,” Spine Journal, vol. 8, no. 6, pp. 998–1002, 2018.
  22. M. Mujeeb-U-Rahman, D. Adalian, C.-F. Chang and A. Scherer, “Optical power transfer and communication methods for wireless implantable sensing platforms,” Journal of Biomedical Optics, vol. 20, no. 9, pp. 095012:1 – 095012:9, 2015.
  23. Anindya Nag, Subhas Chandra Mukhopadhyay, Flexible Sensors for Energy-Harvesting Applications, Springer-Nature, Vol. 42, 2022.
  24. P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathé, P. Porcu, S. Cosnier and R. Haverkamp, “A Glucose BioFuel Cell Implanted in Rats,” PLoS ONE, vol. 5, no. 5, p. e10476, 2010.
  25. B. Shi, Z. Li and Y. Fan, “Implantable Energy-Harvesting Devices,” Advanced Materials, vol. 30, no. 44, pp. 1801511–1801529, 2018.
  26. H. A. Owida, J. I. Al-Nabulsi, N. M. Turab, F. Alnaimat, H. Rababah, M. Y. Shakour, C. Galli and C. Galli, “Autocharging Techniques for Implantable Medical Applications,” International Journal of Biomaterials, vol. 2021, pp. 1–7, 2021.
  27. D. H. Kim, H. J. Shin, H. Lee, C. K. Jeong, H. Park, G. Hwang, H. Lee, D. J. Joe, J. H. Han, S. H. Lee, J. Kim, B. Joung and K. J. Lee, “In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters,” Advanced Function Materials, vol. 27, no. 25, p. 1700341, 2017.
  28. O. V. Gorskii, “Potential Power Supply Methods for Implanted Devices,” Biomedical Engineering, vol. 52, no. 3, p. 204–209, 2018.
  29. S. R. Khan, S. K. Pavuluri, G. Cummins and M. P. Y. Desmulliez, “Wireless Power Transfer Techniques for Implantable Medical Devices: A Review,” Sensors, vol. 20, no. 12, pp. 1–58, 2020.
  30. A. B. Amar, A. B. Kouki and H. Cao, “Power approaches for implantable medical devices,” Sensors, vol. 15, no. 11, p. 28889–28914, 2015.
  31. Chinthaka Pasan Gooneratne, Subhas Mukhopadhyay, Bodong Li, Guodong Zhan, Arturo Magana-Mora, Timothy Eric Moellendick, Triboelectric energy harvesting with pipe-in-pipe structure, US Patent, number 11,421,513, 2022.
  32. J. Li, L. Kang, Y. Long, H. Wei, Y. Yu, Y. Wang, C. A. Ferreira, G. Yao, Z. Zhang, C. Carlos, L. German, X. Lan, W. Cai and X. Wang, “Implanted Battery-Free Direct-Current Micro-Power Supply from in Vivo Breath Energy Harvesting,” ACS Applied Materials & Interfaces, vol. 10, no. 49, pp. 42030–42038, 2018.
  33. C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung and K. J. Lee, “Topographically-Designed Triboelectric Nanogenerator via Block Copolymer Self-Assembly,” Nano Letters, vol. 14, no. 12, p. 7031–7038, 2014.
  34. S. El Ichi-Ribault, J.-P. Alcaraz, F. Boucher, B. Boutaud, R. Dalmolin, J. Boutonnat, P. Cinquin, A. Zebda and D. K. Martin, “Remote wireless control of an enzymatic biofuel cell implanted in a rabbit for 2 months,” Electrochimica Acta, vol. 269, pp. 360–366, 2018.
  35. A. Pfenniger, M. Jonsson, A. Zurbuchen, V. M. Koch and R. Vogel, “Energy Harvesting from the Cardiovascular System, or How to Get a Little Help from Yourself,” Annals of Biomedical Engineering, vol. 41, no. 11, p. 2248–2263, 2013.
  36. A. Haeberlin, A. Zurbuchen, J. Schaerer, J. Wagner, S. Walpen, C. Huber, H. Haeberlin, J. Fuhrer and R. Vogel, “Successful pacing using a batteryless sunlight-powered pacemaker,” Europace, vol. 16, no. 10, p. 1534–1539, 2014.
  37. K. Goto, T. Nakagawa, O. Nakamura and S. Kawata, “An Implantable Power Supply with an Optically Rechargeable Lithium Battery,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 7, p. 830–833, 2001.
  38. J. Kim, J. Seo, D. Jung, T. Lee, H. Ju, J. Han, N. Kim, J. Jeong, S. Cho, J. H. Seol and J. Lee, “Active photonic wireless power transfer into live tissues,” Proceedings of the National Academy of Sciences - PNAS, vol. 117, no. 29, p. 16856–16863, 2020.
  39. M. P. Theodoridis, “Effective Capacitive Power Transfer,” IEEE Transactions on Power Electronics, vol. 27, no. 12, pp. 4906–4913, 2012.
  40. A. M. Sodagar and P. Amiri, “Capacitive coupling for power and data telemetry to implantable biomedical microsystems,” 2009 4th International IEEE/EMBS Conference on Neural Engineering, 2009, pp. 411–414, 2009.
  41. K. Detka and K. Gorecki, “Wireless Power Transfer - A Review,” Energies, vol. 15, no. 19, p. 7236, 2022.
  42. S. Nag, A. Koruprolu, S. M. Saikh, R. Erfani and P. Mohseni, “Auto-Resonant Tuning for Capacitive Power and Data Telemetry Using Flexible Patches,” IEEE Transactions on Circuits and Systems. II, Express Briefs, vol. 67, no. 10, p. 1804–1808, 2020.
  43. A. Hassan, C. Sawma, M. Hasanuzzaman, B. Gosselin and M. Sawan, “Spatial carrier position modulation based multichannel capacitive link for bioelectronic implants,” 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4, 2015.
  44. G. L. Barbruni, P. M. Ros, D. Demarchi, S. Carrara and D. Ghezzi, “Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review,” IEEE Transactions on Biomedical Circuits and Systems, vol. 14, no. 6, p. 1160–1178, 2020.
  45. J. C. Schuder, “Powering an Artificial Heart: Birth of the Inductively Coupled-Radio Frequency System in 1960,” Artificial Organs, vol. 26, no. 11, pp. 909–915, 2002.
  46. M. C. Edwards, J. M. Hoy, S. I. FitzGibbon and P. J. Murray, “Monitoring with microchips: Microchip-automated doors as a potential novel method for tracking the survival of released Northern Brown Bandicoots,” Ecological Management & Restoration, vol. 21, no. 3, p. 254–256, 2020.
  47. M. Kiani, U.-M. Jow and M. Ghovanloo, “Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 6, p. 579–591, 2011.
  48. U.-M. Jow and M. Ghovanloo, “Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 3, pp. 193–202, 2007.
  49. A. Denisov and E. Yeatman, “Ultrasonic vs. Inductive Power Delivery for Miniature Biomedical Implants,” 2010 International Conference on Body Sensor Networks, pp. 84–89, 2010.
  50. G. Lazzi, “Thermal effects of bioimplants,” IEEE Engineering in Medicine and Biology Magazine, vol. 24, no. 5, pp. 75–81, 2005.
  51. S. A. Mirbozorgi, P. Yeon and M. Ghovanloo, “Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 3, pp. 692–702, 2017.
  52. M. Baker and R. Sarpeshkar, “Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 1, p. 28–38, 2007.
  53. P. Feng, P. Yeon, Y. Cheng, M. Ghovanloo and T. G. Constandinou, “Chip-Scale Coils for Millimeter-Sized Bio-Implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 5, p. 1088–1099, 2018.
  54. S. R. Khan, S. K. Pavuluri, G. Cummins and M. P. Y. Desmulliez, “Miniaturized 3-D Cross-Type Receiver for Wirelessly Powered Capsule Endoscopy,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 5, p. 1985–1993, 2019.
  55. B. Lenaerts and R. Puers, “An inductive power link for a wireless endoscope,” Biosensors & Bioelectronics, vol. 22, no. 7, p. 1390–1395, 2007.
  56. S. Ozeri, D. Shmilovitz, S. Singer and C.-C. Wang, “Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shaded transmitter,” Ultrasonics, vol. 50, no. 7, pp. 666–674, 2010.
  57. H. Basaeri, D. B. Christensen and S. Roundy, “A review of acoustic power transfer for bio-medical implants,” Smart Materials and Structures, vol. 25, no. 12, p. 123001, 2016.
  58. S. Ozeri and D. Shmilovitz, “Ultrasonic transcutaneous energy transfer for powering implanted devices,” Ultrasonics, vol. 50, no. 6, pp. 556–566, 2010.
  59. M. Meng and M. Kiani, “Design and Optimization of Ultrasonic Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 11, no. 1, pp. 98–107, 2017.
  60. C. Wang, Q. Shi and C. Lee, “Advanced Implantable Biomedical Devices Enabled by Triboelectric Nanogenerators,” Nanomaterials, vol. 12, no. 8, p. 1366, 2022.
  61. S. Arra, J. Leskinen, J. Heikkila and J. Vanhala, “Ultrasonic Power and Data Link for Wireless Implantable Applications,” 2007 2nd International Symposium on Wireless Pervasive Computing, 2007.
  62. B. L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs, S. Menegatti and M. A. Daniele, “Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications,” Advanced Healthcare Materials, vol. 10, no. 17, p. 2100986, 2021.
  63. B. M. G. Rosa and G.-Z. Yang, “Ultrasound Powered Implants: Design, Performance Considerations and Simulation Results,” Scientific Reports, vol. 10, no. 1, p. 6537, 2020.
  64. C. Chen, Z. Wen, J. Shi, X. Jian, P. Li, J. T. W. Yeow and X. Sun, “Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication,” Nature Communications, vol. 11, no. 1, p. 4143, 2020.
  65. S. Sherrit, M. Badescu, X. Bao, Y. Bar-Cohen and Z. Chang, “Efficient electromechanical network model for wireless acoustic-electric feed-throughs,” SPIE, vol. 5758, p. 362–372, 2005.
  66. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti and J. Rödel, “BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives,” Applied Physics Reviews, vol. 4, no. 4, p. 041305, 2017.
  67. J. Charthad, M. J. Weber, T. C. Chang and A. Arbabian, “A mm-Sized Implantable Medical Device (IMD) With Ultrasonic Power Transfer and a Hybrid Bi-Directional Data Link,” IEEE Journal of Solid-State Circuits, vol. 50, no. 8, p. 1741–1753, 2015.
  68. C. Li, K.-F. Un, P.-i. Mak, Y. Chen, J.-M. Munoz-Ferreras, Z. Yang and R. Gomez-Garcia, “Overview of Recent Development on Wireless Sensing Circuits and Systems for Healthcare and Biomedical Applications,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 2, p. 165–177, 2018.
  69. M. J. Weber, Y. Yoshihara, A. Sawaby, J. Charthad, T. C. Chang and A. Arbabian, “A Miniaturized Single-Transducer Implantable Pressure Sensor With Time-Multiplexed Ultrasonic Data and Power Links,” IEEE Journal of Solid-State Circuits, vol. 53, no. 4, p. 1089–1101, 2018.
  70. R. Hinchet, H.-J. Yoon, H. Ryu, M.-K. Kim, E.-K. Choi, D.-S. Kim and S.-W. Kim, “Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology’,” Science (American Association for the Advancement of Science), vol. 365, no. 6452, p. 491–494, 2019.
  71. G. Jiang, “Design challenges of implantable pressure monitoring system,” Frontiers in Neuroscience, vol. 4, p. 29, 2010.
  72. T. Dong, Y. Gu, T. Liu and M. Pecht, “Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications,” Sensors and Actuators A: Physical, vol. 326, p. 112720, 2021.
  73. N. Arfah, A. H. M. Z. Alam and S. Khan, “Capacitance-to-voltage converter for capacitance measuring system,” 2011 4th International Conference on Mechatronics (ICOM), pp. 1–4, 2011.
  74. C. Zhang, R. Gallichan, D. M. Budgett and D. McCormick, “A capacitive pressure sensor interface ic with wireless power and data transfer,” Micromachines, vol. 11, no. 10, p. 897, 2020.
  75. Z. Ma, Y. Zhang, K. Zhang, H. Deng and Q. Fu, “Recent progress in flexible capacitive sensors: Structures and properties,” Nano Materials Science, 2022.
  76. M. Cicalini, M. Piotto, P. Bruschi and M. Dei, “Design of a Capacitance-to-Digital Converter Based on Iterative Delay-Chain Discharge in 180 nm CMOS Technology,” Sensors, vol. 22, no. 1, p. 121, 2021.
  77. R. Wei, W. Wang, X. Xiao and Q. Chen, “A Low-Power Delta-Sigma Capacitance-to-Digital Converter for Capacitive Sensors,” IEEE Access, vol. 7, p. 78281–78288, 2019.
  78. Prashanth V. and George B., “An Improved Capacitance-to-digital Converter for Leaky Capacitive sensors”, IEEE Sensors Journal, vol. 15, no. 11, pp. 6238–6247, Nov. 2015.
  79. Sreenath V. and George B., “An Improved Closed-Loop Switched Capacitor Capacitance to Frequency Converter and Its Evaluation”, IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 5, pp. 1028–1035, May 2018.
  80. B. Lee and M. Ghovanloo, “An Overview of Data Telemetry in Inductively Powered Implantable Biomedical Devices,” IEEE Communications Magazine, vol. 57, no. 2, p. 74–80, 2019.
  81. S. Ha, C. Kim, J. Park, S. Joshi and G. Cauwenberghs, “Energy Recycling Telemetry IC With Simultaneous 11.5 mW Power and 6.78 Mb/s Backward Data Delivery Over a Single 13.56 MHz Inductive Link,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, p. 2664–2678, 2016.
  82. Vivek AS Ramakrishna, Uphar Chamoli, Subhas C Mukhopadhyay, Ashish D Diwan, B Gangadhara Prusty, Measuring compressive loads on a ‘smart’lumbar interbody fusion cage: Proof of concept, Journal of Biomechanics, Elsevier, vol. 147, pp. 111440, 2023.
  83. A. Ebrazeh and P. Mohseni, “30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link,” IEEE Transactions on Biomedical Circuits and Systems, vol. 9, no. 3, p. 362–369, 2015.
  84. J. M. Anderson, “Inflammatory Response to Implants,” ASAIO Journal, vol. 34, no. 2, p. 101–107, 1988.
  85. P. D. Wolf and W. M. Reichert, “Thermal Considerations for the Design of an Implanted Cortical Brain–Machine Interface (BMI),” in Indwelling Neural Implants, CRC Press, 2008, pp. 81–104.
  86. C. R. Davies, F. Fukumura, K. Fukamachi, K. Muramoto, S. C. Himley, A. Massiello, J.-F. Chen and H. Harasaki, “Adaptation of tissue to a chronic heat load,” ASAIO Journal, vol. 40, no. 3, p. M514–M517, 1994.
  87. D. Jiang, B. Shi, H. Ouyang, Y. Fan, Z. L. Wang and Z. Li, “Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics,” ACS Nano, vol. 14, no. 6, p. 6436–6448, 2020.
  88. K. N. Bocan and E. Sejdić, “Adaptive transcutaneous power transfer to implantable devices: A state of the art review,” Sensors, vol. 16, no. 3, p. 393, 2016.
  89. T. Laube, C. Brockmann, R. Buss, C. Lau, K. Höck, N. Stawski, T. Stieglitz, H. A. Richter and H. Schilling, “Optical energy transfer for intraocular microsystems studied in rabbits,” Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 8, p. 661–667, 2004.
  90. X. Zhuang, A. Nikoozadeh, M. A. Beasley, G. G. Yaralioglu, B. T. Khuri-Yakub and B. L. Pruitt, “Biocompatible coatings for CMUTs in a harsh, aqueous environment,” Journal of Micromechanics and Microengineering, vol. 17, no. 5, p. 994–1001, 2007.
  91. D. S. Lee, S. J. Kim, E. B. Kwon, C. W. Park, S. M. Jun, B. Choi and S. W. Kim, “Comparison of in vivo biocompatibilities between parylene-C and polydimethylsiloxane for implantable microelectronic devices,” Bulletin of Materials Science, vol. 36, no. 6, p. 1127–1132, 2013.
  92. A. Ibrahim, M. Meng and M. Kiani, “A Comprehensive Comparative Study on Inductive and Ultrasonic Wireless Power Transmission to Biomedical Implants,” IEEE Sensors Journal, vol. 18, no. 9, p. 3813–3826, 2018.
  93. M. O. Culjat, D. Goldenberg, P. Tewari and R. S. Singh, “A Review of Tissue Substitutes for Ultrasound Imaging,” Ultrasound in Medicine & Biology, vol. 36, no. 6, p. 861–873, 2010.
  94. Silicon Labs, “EFM8BB52 Data Sheet,” Silicon Labs, 2021. [Online]. Available: https://www.silabs.com/documents/public/data-sheets/efm8bb52-data-sheet.pdf. [Accessed 8 June 2023].
  95. Amphenol, “P122 High Silicon Pressure Sensor Die,” Amphenol, 2018. [Online]. Available: https://www.amphenol-sensors.com/en/novasensor/pressure-sensor-die/3166-p122. [Accessed 11 November 2022].
  96. NuVasive, “Coroent Thoracolumbar System Patient Information Leaflet,” NuVasive, 1 December 2021. [Online]. Available: https://www.nuvasive.com/wp-content/uploads/2021/11/CoRoent-Thoracolumbar-System-Patient-Information-Leaflet_Final.pdf. [Accessed 12 June 2023].
  97. PTC, “Creo Parametric 3D Modelling Software,” PTC, 2023. [Online]. Available: https://www.ptc.com/en/products/creo/parametric. [Accessed 12 June 2023].
  98. Chinthaka Pasan Gooneratne, Subhas Mukhopadhyay, Bodong Li, Guodong Zhan, Arturo Magana-Mora and Timothy Eric Moellendick, Triboelectric energy harvesting with pipe-in-pipe structure, US Patent 11,421,513, 2022.
  99. Keysight Technologies, “U1730C Series Handheld LCR Meters,” Keysight Technologies, 18 October 2018. [Online]. Available: https://www.keysight.com/au/en/assets/7018-02950/data-sheets/5990-7778.pdf. [Accessed 12 June 2023].
  100. Onsemi, “1N5820, 1N5821, 1N5822 - Axial Lead Rectifiers,” Onsemi, December 2007. [Online]. Available: https://www.onsemi.com/pdf/data-sheet/1n5820-d.pdf. [Accessed 10 June 2023].
  101. J. Harries, T. H. Jochimsen, T. Scholz, T. Schlender, H. Barthel, O. Sabri and B. Sattler, “A realistic phantom of the human head for PET-MRI,” EJNMMI Physics, vol. 7, no. 1, p. 52, 2020.
  102. Nguyen Thi Phuoc Van, Syed Faraz Hasan, Xiang Gui, Subhas Mukhopadhyay, Hung Tran, Three-step two-way decode and forward relay with energy harvesting, IEEE Communications Letters, Vol. 21, Issue 4, pp. 857–860, 2016.
  103. Vivek AS Ramakrishna, Uphar Chamoli, Alessandro G Larosa, Subhas C Mukhopadhyay, B Gangadhara Prusty, Ashish D Diwan, A biomechanical comparison of posterior fixation approaches in lumbar fusion using computed tomography based lumbosacral spine modelling, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, SAGE Publishing, vol. 237, Issue 2, pp. 243–253, 2023.
  104. H. E. Jaramillo, L. Gómez and J. J. García, “A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs,” Acta of Bioengineering and Biomechanics, vol. 17, no. 2, p. 15–24, 2015.
  105. Texas Instruments, “TMP117 High-Accuracy, Low-Power, Digital Temperature Sensor With SMBus™ - and I2C-Compatible Interface,” Texas Instruments, September 2022. [Online]. Available: https://www.ti.com/lit/ds/symlink/tmp117.pdf?ts=1668131690221. [Accessed 11 November 2022].
  106. Core Electronics, “PiicoDev Precision Temperature Sensor TMP117,” Core Electronics, 2023. [Online]. Available: https://core-electronics.com.au/piicodev-precision-temperature-sensor-tmp117.html. [Accessed 6 June 2023].
  107. Python, “Python Programing Language,” Python, 2023. [Online]. Available: https://www.python.org/. [Accessed 6 June 2023].
  108. PuTTY, “PuTTY Program,” PuTTY, 2023. [Online]. Available: https://www.putty.org/. [Accessed 6 June 2023].
  109. Raspberry Pi, “Raspberry Pi Zero W,” Raspberry Pi, 2023. [Online]. Available: https://www.raspberrypi.com/products/raspberry-pi-zero-w/. [Accessed 6 June 2023].
  110. J. P. Sanjurjo, E. Prefasi, C. Buffa and R. Gaggl, “A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications,” Sensors, vol. 17, no. 6, p. 1312, 2017.
  111. Z. Tan, H. Jiang, H. Zhang, X. Tang, H. Xin and S. Nihtianov, “Power-Efficiency Evolution of Capacitive Sensor Interfaces,” IEEE Sensors Journal, vol. 21, no. 11, p. 12457–12468, 2021.
  112. Rectron Semiconductor, “Single-Phase Silicon Bridge Rectifier BR1005 Thru BR1010,” Rectron Semiconductor, May 2001. [Online]. Available: https://www.jaycar.com.au/medias/sys_master/images/images/9965579567134/ZR1320-dataSheetMain.pdf. [Accessed 6 June 2023].
  113. F. Durmus and S. Karagol, “Mutual Inductance Calculation for Planar Square and Hexagonal Coils,” Arabian Journal for Science and Engineering, vol. 47, no. 3, p. 3409–3420, 2022.
  114. Vivek AS Ramakrishna, Uphar Chamoli, Alessandro G Larosa, Subhas C Mukhopadhyay, B Gangadhara Prusty, Ashish D Diwan, Finite element modeling of temporal bone graft changes in XLIF: Quantifying biomechanical effects at adjacent levels, Journal of Orthopaedic Research®, Vol. 40, Issue, 6, pp. 1420–1435, 2022.
  115. Keysight Technologies, “N2791A 25 MHz High Voltage Differential Probe,” Keysight Technologies, 13 September 2021. [Online]. Available: https://www.keysight.com/au/en/assets/7018-02105/data-sheets/5990-3780.pdf. [Accessed 10 June 2023].
  116. Gunjan Gupta and Robert Van Zyl Energy harvested end nodes and performance improvement of LoRa networks, International Journal on Smart Sensing and Intelligent Systems, VOLUME 14 (2021): ISSUE 1 (JANUARY 2021), Mar 01, 202, 15 pages, DOI: DOI: 10.21307/ijssis-2021-002.
  117. M. Tanaka, S. Sonawane, Y. Fujiwara, K. Uotani, T. Yamauchi, T. Omori and K. Hashizume, “Surgical treatment for spondyloptosis: A case report,” Interdisciplinary Neurosurgery : Advanced Techniques and Case Management, vol. 25, p. 101161, 2021.
  118. H. J. Kim, V. Nemani, O. Boachie-Adjei, M. E. Cunningham, J. A. Iorio, K. O’Neill, B. J. Neuman and L. G. Lenke, “Distal Fusion Level Selection in Scheuermann’s Kyphosis: A Comparison of Lordotic Disc Segment Versus the Sagittal Stable Vertebrae,” Global Spine Journal, vol. 7, no. 3, p. 254–259, 2017.
  119. M. S. Park, S.-H. Moon, T.-H. Kim, J. K. Oh, H. J. Kang and K. D. Riew, “Radiographic Comparison between Cervical Spine Lateral and Whole-Spine Lateral Standing Radiographs,” Global Spine Journal, vol. 6, no. 2, p. 118–123, 2016.
  120. International Organization for Standardization, “ISO 10993-1:2018,” International Organization for Standardization, October 2018. [Online]. Available: https://www.iso.org/standard/68936.html. [Accessed 12 June 2023].
  121. Keysight Technologies, “U1230 Series - Handheld Digital Multimeteres,” Keysight Technologies, 22 February 2022. [Online]. Available: https://www.keysight.com/au/en/assets/7018-02915/data-sheets/5990-7550.pdf. [Accessed 12 June 2023].
Language: English
Submitted on: Jun 22, 2024
Published on: Sep 28, 2024
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Subhas C. Mukhopadhyay, Isaac Senn, Vivek Ramakrishna, Boby George, Gangadhara Prusty, Ashish Diwan, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.