References
- P. K. Dash, B. K. Panigrahi and G. Panda, “Power quality analysis using S-transform,” in IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 406–411, April 2003, doi: 10.1109/TPWRD.2003.809616.
- M. Gouda, M. M. A. Salama, M. R. Sultan, and A. Y. Chikhani, “Power quality detection and classification using wavelet multi-resolution signal decomposition,” IEEE Trans. Power Delivery, vol. 14, pp. 1469–1476, Oct. 1999.
- P. Pillay and A. Bhattacharjee, “Application of wavelets to model short–term power system disturbances,” IEEE Trans. Power Delivery, vol. 11, pp. 2031–2037, Oct. 1996.
- Rahim Abdullah, Abdul, et al. “Performance Evaluation of Real Power Quality Disturbances Analysis Using S-Transform.” Applied Mechanics and Materials, vol. 752–753, Trans Tech Publications, Ltd., Apr. 2015, pp. 1343–1348. doi:10.4028/www.scientific.net/amm.752-753.1343.
- Beuter, C., Oleskovicz, M.: S-transform: from main concepts to some power quality applications. IET Signal Process. 14(3), 115–123 (2019).
- J. Ladan and Edward R. Vrscay, “The Discrete Orthonormal Stockwell Transform and Variations, with Applications to Image Compression”, ICIAR 2013, LNCS 7950, pp. 235–244, 2013.
- Drabycz, S., Stockwell, R.G., Mitchell, J.R.: Image texture characterization using the discrete orthonormal s-transform. Journal of Digital Imaging 22(6), 696–708 (2009).
- Jaya Bharata Reddy, M., Raghupathy, R. K., Venkatesh, K. P., & Mohanta, D. K. (2013). Power quality analysis using discrete orthogonal S-transform (DOST). Digital Signal Processing, 23(2), 616–626. http://dx.doi.org/10.1016/j.dsp.2012.09.013
- M. Jaya Bharata Reddy, B. Karthik Chandra, D.K. Mohanta, A DOST based approach for the condition monitoring of 11 kV distribution line insulators, IEEE Trans. Dielectr. Electr. Insul. 18 (2) (April 2011) 588–595.
- Seckin Karasu, Zehra Sarac, “Investigation of power quality disturbances by using 2d discrete orthonormal s-transform, machine learning and multi-objective evolutionary algorithms Swarm Evol. Comput., 44 (2019), pp. 1060–1072. https://doi.org/10.1016/j.swevo.2018.11.002
- Xi Zhong Cui, Han Ping Hong; Use of Discrete Orthonormal S Transform to Simulate Earthquake Ground Motions. Bulletin of the Seismological Society of America 2020; 110 (2): 565–575. doi: https://doi.org/10.1785/0120190212
- Cohen, L. (1995). Time-Frequency Analysis, Vol. 778, Prentice Hall, Upper Saddle River, New Jersey.
- A. A. Ahmad, A. Ehimen Airoboman, A. Abdulaziz and H. Hussaini, “Power Quality Disturbances Analysis using Two Forms of Wigner-Ville Distribution,” 2019 IEEE PES/IAS Power Africa, Abuja, Nigeria, 2019, pp. 424–428, doi: 10.1109/PowerAfrica.2019.8928911.
- Wang, J.; Ye, N.; Ge, L. Steady-State Power Quality Synthetic Evaluation Based on the Triangular Fuzzy BW Method and Interval VIKOR Method. Appl. Sci. 2020, 10, 2839. https://doi.org/10.3390/app10082839
- Martinez, R.; Castro, P.; Arroyo, A.; Manana, M.; Galan, N.; Moreno, F.S.; Bustamante, S.; Laso, A. Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review. Sustainability 2022, 14, 7428. https://doi.org/10.3390/su14127428
- Gopal lal Rajora, Miguel A. Sanz-Bobi, Carlos Mateo Domingo, ‘Application of Machine Learning Methods for Asset Management on Power Distribution Networks’, Emerging Science Journal, Vol. 6, No. 4, p. 905–920, 2022. DOI: http://dx.doi.org/10.28991/ESJ-2022-06-04-017]
- Muhammad Bilal Akhtar, ‘The Use of a Convolutional Neural Network in Detecting Soldering Faults from a Printed Circuit Board Assembly’, HighTech and Innovation Journal, Vol. 3, No. 1, 2022, p:1–14. http://dx.doi.org/10.28991/HIJ-2022-03-01-01
- R.G. Stockwell, A basis for efficient representation of the S-transform, Digital Signal Process. 17 (1) (2007) 371–393.
- S. Drabycz, R.G. Stockwell, J.R. Mitchell, Image texture characterisation using the discrete orthogonal S-transform, J. Digit. Imaging 22(6) (2009) 696–708.
- Xiao, Y.; Yang, H.; Liu, A. Short time disturbance detection using DCT analysis in distribution system. In Proceedings of the CIRED 2005-18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005.
- Imtiaz, H.; Sanam, T.F. Frequency domain feature extraction for power quality disturbance classification. In Proceedings of the 2013 International Conference on Informatics, Electronics and Vision, ICIEV 2013, Dhaka, Bangladesh, 17–18 May 2013.
- Hüseyin Erişti, Özal Yıldırım, Belkıs Erişti, Yakup Demir, ‘Automatic recognition system of underlying causes of power quality disturbances based on S-Transform and Extreme Learning Machine, International Journal of Electrical Power & Energy Systems, Volume 61, 2014, pp. 553–562, https://doi.org/10.1016/j.ijepes.2014.04.010
- K. Thirumala, M. S. Prasad, T. Jain and A. C. Umarikar, “Tunable-Q Wavelet Transform and Dual Multiclass SVM for Online Automatic Detection of Power Quality Disturbances,” in IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3018–3028, July 2018, doi: 10.1109/TSG.2016.2624313.
- H. I. Hussein, G, A. Salman and A. M. Ghadban “Employment of PSO Algorithm to Improve the Neural Network Technique for Radial Distribution System State Estimation”, INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, Vol. 12, Issue 1 (2019) pp. 1–10. DOI: 10.21307/ijssis-2019-005