Have a personal or library account? Click to login
Study of structural and morphological properties of RF-sputtered SnO2 thin films and their effect on gas-sensing phenomenon Cover

Study of structural and morphological properties of RF-sputtered SnO2 thin films and their effect on gas-sensing phenomenon

Open Access
|Feb 2023

References

  1. Meixner H. and Lampe U., Metal oxide sensors, Sensors and Actuators B 33 (1996) 198. https://doi.org/10.1016/0925-4005(96)80098-0
  2. Ryzhikov A, Labeau M, Gaskov A, Al2O3(M = Pt, Ru) catalytic membranes for selective semiconductor gas sensors, Sensors and Actuators B Chemical 109 (2005) 91–96. https://doi.org/10.1016/j.snb.2005.03.004
  3. Chowdhuri A, Gupta V, and Sreenivas K, “Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2”, Sens. Actuators B 93, (2003) 572–579.
  4. Xu C, Tamaki J, Miura N, Yamazoe N, Grain size effects on gas sensitivity of porous SnO2-based elements, Sensors and Actuators B 3 (1991) 147–155. https://doi.org/10.1016/0925-4005(91)80207-Z
  5. Shimizu Y, Bartolomeo E D, Traversa E, Gusmano G, Hyodo T, Wada K, Egashira M, Effect of surface modification on NO2 sensing properties of SnO2 varistor-type sensors, Sensors and actuators B 60 (1999) 118–124.
  6. Ogawa H, Nishikawa M, Abe A, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films, J. Appl. Phys. 53 (1982) 4448. https://doi.org/10.1063/1.331230
  7. Chowdhury N. K. and Bhowmik B, Micro/nanostructured gas sensors: the physics behind the nanostructure growth, sensing and selectivity mechanisms, Nanoscale Adv.3 (2021) 73–93. https://doi.org/10.1039/D0NA00552E
  8. Dey A, Semiconductor metal oxide gas sensors: A review, Materials Science and Engineering: B 229 (2018) 206–217. https://doi.org/10.1016/j.mseb.2017.12.036
  9. Korotcenkov G, Gas response control through structural and chemical modification of metal oxides: State of the art and approaches, Sensors & Actuators B 107 (2005) 209–232. https://doi.org/10.1016/j.snb.2004.10.006
  10. Lucas E, Decker S, Khaleel A, Seitz A, Fultz S, Ponce A, Li W, Carnes C, Klabunde K.J, Nanocrystalline Metal Oxides as Unique Chemical Reagents/Sorbents, Chem. Eur. J. 7 (2001) 2505.
  11. Wilson R L, Simion C E, Blackman C S, Carmalt C J, Stanoiu A, Maggio F D and Covington J A, The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition, Sensors 18 (2018) 735. https://doi.org/10.3390/s18030735
  12. Godbole R, Godbole V, Alegaonkar P S, Bhagwat S, Effect of Film Thickness on Gas Sensing Properties of Sprayed WO3 Thin Films, New Journal of Chemistry 41(2017) 20. https://doi.org/10.1039/C7NJ00963A
  13. Shin W Kwona D Ryu M, Kwon J, Hong S, Jeong Y, Jung G, Park J, Kim D, Lee J-H, Effects of IGZO film thickness on H2S gas sensing performance: Response, excessive recovery, low-frequency noise, and signal-to-noise ratio, Sensors and Actuators B: Chemical 344 (2021) 130148. https://doi.org/10.1016/j.snb.2021.130148
  14. Williams D E, Semiconducting Oxides as Gas-Sensitive Resistors, Sensors and Actuators B 57 (1999) 1–16. https://doi.org/10.1016/S0925-4005(99)00133-1
  15. Bisht P, Kumar A, Jensen I T, Ahmad M, Belle B D, Mehta B R, Enhanced gas sensing response for 2D α-MoO3 layers: Thickness-dependent changes in defect concentration, surface oxygen adsorption, and metal-metal oxide contact, Sensors and Actuators B: Chemical 341(2021) 129953. https://doi.org/10.1016/j.snb.2021.129953
  16. Inoue S, Tomita Y, Matsumura Y, Effect of thickness of carbon nanotube films on enhancement of sensor response, Chemical Physics Letters 734 (2019) 136730. https://doi.org/10.1016/j.cplett.2019.136730
  17. Bin J S, Ji K H, Hee A J, Wook H B, Soo H J, Dhanusuraman R; Chool L S; Chang K J, Effects of Thin-Film Thickness on Sensing Properties of SnO2-Based Gas Sensors for the Detection of H2S Gas at ppm Levels, Journal of Nanoscience and Nanotechnology, 20 (2020) 7169–7174. https://doi.org/10.1166/jnn.2020.18854
  18. Korotcenkov G, Brinzari V, Schwank J, Dibattista M, Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application, Sensors and Actuators B 77 (2001) 244–252. https://doi.org/10.1016/S0925-4005(01)00741-9
  19. Sakai G, Baik N S, Miura N, Yamazoe N, Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles. Dependence of CO and H2 response on film thickness, Sensors and Actuators B 77 (2001) 116–121. https://doi.org/10.1016/S0925-4005(01)00682-7
  20. Brinzari V, Korotcenkov G, Golovanov V, Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities for control, Thin Solid Films 391 (2001) 167–175. https://doi.org/10.1016/S0040-6090(01)00978-6
  21. Korotcenkov G, Cho B K, Thin film SnO2-based gas sensors: Film thickness influence, Sensors and Actuators B 142 (2009) 321–330. https://doi.org/10.1016/j.snb.2009.08.006
  22. Xu C, Tamaki J, Miura N, Yamazoe N, Grain size effects on gas sensitivity of porous SnO2-based elements, Sensors and Actuators B 3 (1991) 147–155. https://doi.org/10.1016/0925-4005(91)80207-Z
  23. Deshwal M & Arora A, Enhanced sensitivity with thickness optimization of ZnO based acetone sensor, Indian Journal of Pure & Applied Physics, Vol. 56, May 2018, pp. 367–372.
  24. Hassan E S, Saeed A A, Elttayef A K, Doping and thickness variation influence on the structural and sensing properties of NiO film prepared by RF-magnetron sputtering, J Mater Sci: Mater Electron 27 (2016) 1270–1277. https://doi.org/10.1007/s10854-015-3885-3
  25. Haridas D, Sreenivas K, Gupta V, Improved response characteristics of SnO2 thin film loaded with nanoscale catalysts for LPG detection, Sensors and Actuators B 133 (2008) 270–275. https://doi.org/10.1016/j.snb.2008.02.030
  26. Kim K H and Park C G, Electrical Properties and Gas-Sensing Behavior of SnO2 Films Prepared by Chemical Vapor Deposition, J. Electrochem. Soc. 138 (1991) 2408. https://doi.org/10.1149/1.2085986
  27. Ihokura K, Watson J, The Stannic Oxide Gas Sensor Principles and Applications, CRC Press, Boca Raton (1994).
  28. Miao H, Ding C, Luo H, Antimony-doped tin dioxide nanometer powders prepared by the hydrothermal method, Microelectronic Engineering 66 (2003) 142–146. https://doi.org/10.1016/S0167-9317(03)00038-8
  29. Birkholz, M. (2005) Thin Film Analysis by X-Ray Scattering. doi:10.1002/3527607595
  30. Salunkhe R R, Lokhande C D, Effect of film thickness on liquefied petroleum gas (LPG) sensing properties of SILAR deposited CdO thin films, Sensors and Actuators B 129 (2008) 345–351. https://doi.org/10.1016/j.snb.2007.08.035
  31. Montilla F, Morallón E, De Battisti A, Benedetti A, Yamashita H, Vázquez J.L, Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization, J. Phys. Chem. B 108 (2004) 5044–5050. https://doi.org/10.1021/jp037480b
  32. Shano A M, Habeeb A A, Khodair Z T and Adnan S K, Effects of Thickness on the Structural and Optical Properties of Mn3O4 Nanostructure Thin Films, J. Phys.: Conf. Ser. 1818 (2021) 012049. doi:10.1088/1742-6596/1818/1/012049
  33. Chen H-L, Lu Y-M and Hwang W-S, Effect of Film Thickness on Structural and Electrical Properties of Sputter-Deposited Nickel Oxide Films, Materials Transactions, Vol. 46, No. 4 (2005) pp. 872–879.
  34. Habgood M, Harrison N, An ab initio study of oxygen adsorption on tin dioxide Surface Science 602 (2008) 1072–1079. http://dx.doi.org/10.1016/j.susc.2008.01.017
  35. Gurlo A, Interplay Between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen, ChemPhysChem 7(10):2041–52, http://dx.doi.org/10.1002/cphc.200600292
  36. Franke M.E, Koplin T.J, Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2 (2006) 36–50. https://doi.org/10.1002/smll.200500261
  37. Schierbaum K D, Weimar U, Kowalkowski R and Goepel W, Conductance, work function and catalytic activity of SnO2-based gas sensors, Sensors and Actuators B 3 (1991) 205–210. https://doi.org/10.1016/0925-4005(91)80007-7
  38. Madou M J, Morison S R, Chemical sensing with solid state devices, New York, Academic Press 1989.
  39. Salunkhe R R, Dhawale D S, Dubal D P, Lokhande C D, Sprayed CdO thin films for liquefied petroleum gas (LPG) detection, Sensors and Actuators B 140 (2009) 86–91. https://doi.org/10.1016/j.snb.2009.04.046
  40. Rothschild A and Komem Y, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, Journal of Applied Physics. 95 (2004) 6374–6380. https://doi.org/10.1063/1.1728314
  41. Xu C, Tamaki J, Miura N, Yamazoe N, Relationship between gas sensitivity and microstructure of porous SnO2, J.Electrochem.Soc.Jpn. 58 (1990) 1143–1148.
  42. Yamazoe N, New approaches for improving semiconductor gas sensors, Sensors and Actuators B 5 (1991) 7–19. https://doi.org/10.1016/0925-4005(91)80213-4
Language: English
Submitted on: Jun 14, 2022
Published on: Feb 16, 2023
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Ajay Kumar Arora, Sandeep Mahajan, Maya Verma, Divya Haridas, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.