Have a personal or library account? Click to login
Smart greenhouses using internet of things: case study on tomatoes Cover

Smart greenhouses using internet of things: case study on tomatoes

By: S. J. Juneidi  
Open Access
|Jan 2023

References

  1. W. Abtew and A. Melesse, “Evaporation and evapotranspiration: Measurements and estimations”, Springer Sci., p. 53, p. 62, 2013. http://doi.org/10.1007/978-94-007-4737-1
  2. S.R. Adams, K.E. Cockshull and C.R.J. Cave, “Effect of temperature on the growth and development of tomato fruits. Annals of Botany”, vol. 88, no. 5, pp. 869–877, 2001. http://dx.doi.org/10.1006/anbo.2001.1524
  3. S. J. Juneidi. “From Engineering to Programming: Smart Multi-Agent Application Using ARL”, International Journal of Advanced Science and Technology, vol. 29, no. 05, pp. 2700–2716, May 2020. http://sersc.org/journals/index.php/IJAST/article/view/11368
  4. P.O. Ajwang and H.J. Tantau, “Prediction of the effect of insect-proof screens on climate in a naturally ventilated greenhouse in humid tropical climates”, Acta Horticulturae, Int. Soc. Horticultural Sci. (ISHS), pp. 449–456, Oct. 2005. https://doi.org/10.17660/ActaHortic.2005.691.54
  5. ASABE Standard, “Heating, ventilating and cooling greenhouses”, ANSI/ASAE EP406.4, American Society of Agricultural and Biological Engineers, 2015. http://citeseerx.ist.psu.edu/viewdoc/download?doi=1
  6. H. Gautier, S. Guichard, and M. Tchamitchian, “Modulation of competition between fruits and leaves by flower pruning and water fogging, and consequences on tomato leaf and fruit growth”, Annals of Botany, vol. 88 no. 4, pp. 645–652, 2001. http://dx.doi.org/10.1006/anbo.2001.1518
  7. R. I. Grange and D.W. Hand. “A review of the effects of atmospheric humidity on the growth of horticultural crops”, Journal of Horticultural Sciences, vol. 62 no. 2, pp. 125–134, 1987. https://doi.org/10.1080/14620316.1987.11515760
  8. D. Harel, H. Fadida, A. Slepoy, S. Gantz, and K. Shilo, “The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation”, Agronomy, vol. 4 no. 1, pp. 167–177, 2014.
  9. G.J. Hochmuth and R.C. Hochmuth, “Production of greenhouse tomatoes - Florida greenhouse vegetable production handbook”, Selection of Cultivars. Production, 3, pp. 1–18, 2012.
  10. G.J. Hoffman, “Humidity, Controlled Environment Guidelines Plant Res.”, pp. 141–172, 1979.
  11. R. Holder and K.E. Cockshull, “Effects of humidity on the growth and yield of glasshouse tomatoes”, Journal of Horticultural Science, vol. 65 no. 1, p. 3139, 1990. https://doi.org/10.1080/00221589.1990.11516025
  12. D. Iraqi, S. Gagnon, S. Dubé, and A. Gosselin, “Vapor pressure deficit (VPD) effects on the physiology and yield of greenhouse tomato”, HortScience, vol. 30 no. 4, pp. 846–846, 1995.
  13. N. Jain, “Tomato cultivation in open fields and greenhouses. A guideline booklet”, NaanDanJain Irrigation Ltd., 2012. http://www.naandanjain.com/uploads/catalogerfiles/tomato-2/Tomato_eng_booklet_190812final%20.pdf
  14. J. Janse and G.W.H. Welles, “Effects of energy saving measures on keeping quality of tomato and cucumber fruits” In Symposium on Quality of Vegetables. Jun 18. 163, pp. 261–270, 1984. https://doi.org/10.17660/ActaHortic.1984.163.29
  15. M.E. Jensen, R.D. Burman, and R.G. Allen, “Evapotranspiration and Irrigation Water Requirements”, Book - Manual of Practice No. 70. American Society of Civil Engineers, 1990. https://doi.org/10.1061/9780784414057
  16. J.B. Jones, “Instructions for Growing Tomatoes in the Garden and Green-House”, GroSystems. 2013.
  17. J.W. Jones, E. Dayan, L.H. Allen, H. Van Keulen, and H. Challa, “A dynamic tomato growth and yield model (TOMGRO)”, trans. ASAE, vol. 34 no. 2, 1991.
  18. W. Baudoin, R. Nono-Womdim, N. Lutaladio, A. Hodder, N. Castilla, C. Leonardi, S. De Pascale, M. Qaryouti, and R. Duffy, “Good agricultural practices for greenhouse vegetable crops: principles for mediterranean climate areas”, 2013.
  19. R. Chen, S. Kang, X. Hao, F. Li, T. Du, R. Qiu, and J. Chen, “Variations in tomato yield and quality in relation to soil properties and evapotranspiration under greenhouse condition”, Scientia Hort., vol. 197 no. 3, 2015. http://dx.doi.org/10.1016/j.scienta.2015.09.047
  20. E. Cherie, “The Complete Guide to Growing Tomatoes: A Complete Step-by-Step Guide Including Heirloom Tomatoes (Back-to-Basics Gardening)”, 2010.
  21. J.H. Choi, G.C. Chung, and Suh S.R., “Effect of night humidity on the vegetative growth and the mineral composition of tomato and strawberry plants”, Scientia Hort., vol. 70 no. 4, pp. 293–299, 1997. http://www.sciencedirect.com/science/article/pii/S0304423897000551
  22. S. Cohen, E. Raveh, Y. Li, A. Grava, E.E. Goldschmidh, “Physiological responses of leaves, tree growth and fruit yield of grapefruit trees under reflective shade screens”, Scientia Hort., vol. 107 no. 1, pp. 25–35, 2005. http://www.sciencedirect.com/science/article/pii/S0304423805002128
  23. R.S. Criddle, B.N. Smith, and L.D. Hansen, “A respiration based description of plant growth rate responses to temperature”, Planta, vol. 201 no. 4, pp. 441–445, 1997. https://doi.org/10.1007/s004250050087
  24. G. Dimokas, M. Tchamitchian, and C. Kittas, “Calibration and validation of a biological model to simulate the development and production of tomatoes in Mediterranean greenhouses during winter period”, Biosystems Eng., vol. 103 no. 2, pp. 217–227, 2009. http://dx.doi.org/10.1016/j.biosystemseng.2009.01.004
  25. P. Duchowski and A. Brazaitytë, “Tomato photosynthesis monitoring in investigations on tolerance to low temperatures”, Acta Horticulturae. Int. Soc. Horticultural Sci. (ISHS), pp. 335–339, 2001. https://doi.org/10.17660/ActaHortic.2001.562.39
  26. Factsheet, “Understanding Humidity Control in Greenhouses”, Publication of the Canadian Ministry of Agriculture, British Columbia, 2015. https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agricultureandseafood/animalandcrops/cropproduction/understanding_humidity_control.pdf
  27. M. Gallardo, R.B. Thompson, J.S. Rodriguez, F. Rodriguez, M.D. Fernández, J.A. Sánchez, and Magán J.J., “Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate”, Agricultural Water Manag., vol. 96 no. 12, pp. 1773–1784, 2009.
  28. M.L. Garcia, E. Medrano, M.C. Sanchez-Guerrero, and P. Lorenzo, “Climatic effects of two cooling systems”, Optimum Multiclimate for Greenhouse Cultivation of Tomato 301 and fruit production of tomato plants, Sci. Hort., vol. 27 no. 1, pp. 9–13, 2011. http://www.sciencedirect.com/science/article/pii/0304423885900494
  29. C. Kittas, M. Karamanis, and N. Katsoulas, “Air temperature regime in a forced ventilated greenhouse with rose crop”, Energy Buildings, vol. 37 no. 8, pp. 807–812, 2005. http://www.sciencedirect.com/science/article/pii/S0378778804003433
  30. [29] Y. Li, X. Wen, L. Li, and M. Song, “The effect of root-zone temperature on temperature difference between leaf and air in tomato plants”, Acta Hortic., 1107, pp. 251–256, 2014. 10.17660/ActaHortic.2015.1107.34
    LiY. WenX. LiL. SongM. “The effect of root-zone temperature on temperature difference between leaf and air in tomato plants” Acta Hortic. 1107 251 256 2014 10.17660/ActaHortic.2015.1107.34
  31. F. Liu, Y. Cohen, M. Fuchs, Z. Plaut, and A. Grava, “The effect of vapor pressure deficit on leaf area and water transport in flower stems of soil-less culture rose”, Agricultural Water Manag., vol. 81 no. 1–2, pp. 216–224, 2006.
  32. N. Lu, T. Nukaya, T. Kamimura, D. Zhang, I. Kurimoto, M. Takagaki, T. Maruo, T. Kozai, and W. Yamori, “Control of vapor pressure deficit (VPD) in greenhouse enhanced tomato growth and productivity during the winter season”, Scientia Horticulturae, 197, pp. 17–23, 2015. https://www.sciencedirect.com/science/article/pii/S0304423815302752
  33. G. Mahajan and K.G. Singh, “Response of Greenhouse tomato to irrigation and fertigation”, Agric. Water Manag., vol. 84 no. 1, pp. 202–206, 2006. http://www.sciencedirect.com/science/article/pii/S0378377406000953
  34. J.I. Morison and M.D. Morecroft, “Plant growth and climate change”, John Wiley and Sons. 2008. http://doi.wiley.com/10.1002/9780470988695
  35. M. Nepi, L. Cresti, M. Guarnieri, and E. Pacini, “Effect of relative humidity on water content, viability and carbohydrate profile of Petunia hybrida and Cucurbita pepo pollen”, Plant Systematics Evolution, vol. 284 no. 1–2, pp. 57–64, 2010.
  36. G. Ntatsi, D. Savvas, K. Huntenburg, U. Druege, D.K. Hincha, E. Zuther, and D. Schwarz, “A study on ABA involvement in the response of tomato to suboptimal root temperature using reciprocal grafts with notabilis, a null mutant in the ABA-biosynthesis gene LeNCED1”, Environmental and experimental botany, vol. 97 pp. 11–21, 2014. https://www.sciencedirect.com/science/article/pii/S0098847213001408
  37. S.M. Olson, W.M. Stall, G.E. Vallad, S.E. Webb, S.A. Smith, E.H. Simonne, E.J. McAvoy, B.M. Santos, and M. Ozores Hampton, “Tomato production in Florida”, EDIS. 2012.
  38. S. Omafra, “Growing Greenhouse Vegetables”, Ontario Ministry of Agriculture, Food, and Rural Affairs. 2005.
  39. M. Peet, S. Sato, C. Clément, and E. Pressman, “Heat stress increases sensitivity of pollen, fruit and seed production in tomatoes (Lycopersicon esculentum Mill.) to non-optimal vapor pressure deficits”, Acta Horticulturae. Int. Soc. Hort. Sci. (ISHS), pp. 209–215, 2002. https://doi.org/10.17660/ActaHortic.2003.618.23
  40. A.J.F. Picken, “A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.)”, J. Hort. Sci., vol. 59 no. 1, pp. 1–13, 1984. https://doi.org/10.1080/00221589.1984.11515163
  41. K. Popovski, “Greenhouse climate factors”, Geo-heat center Quarterly Bulletin, vol. 18 no. 1, pp. 14–20. 1997.
  42. J. Portree, “Greenhouse vegetable production guide for commercial growers”, Province of British Columbia Ministry of Agriculture, Fisheries and Food, 1996.
  43. J.J. Prenger and P.P. Ling, “Greenhouse Condensation Control Understanding and Using Vapor Pressure Deficit (VPD)”, 2001.
  44. J.J. Prenger and P.P. Ling, “Ohio State University Fact Sheet Food, Agricultural and Biological Engineering Greenhouse Condensation Control - An Introduction”, pp. 1–3. 2007.
  45. S. Sato, M. Kamiyama, T. Iwata, N. Makita, H. Furukawa, and H. Ikeda, “Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development”, Annals Botany, vol. 97 no. 5, pp. 731–738, 2006.
  46. S. Sato, M.M. Peet, and J.F. Thomas, “Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress”, Plant, Cell Environ., vol. 23 no. 7, pp. 719–726, 2000. http://dx.doi.org/10.1046/j.1365-3040.2000.00589
  47. D. Schwarz, A.J. Thompson, and H.P. Kläring, 2014. “Guidelines to use tomato in experiments with a controlled environment”, Frontiers Plant Sci., 5, p. 625. http://www.ncbi.nlm.nih.gov/pubmed/25477888%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4235429
  48. R. Shamshiri, “Measuring optimality degrees of microclimate parameters in protected cultivation of tomato under tropical climate condition”, Measurement, 2017. http://www.sciencedirect.com/science/article/pii/S0263224117301276
  49. R. Shamshiri, D. Ahmad, A. Zakaria, W.I.W. Ismail, H.C. Man and M. Yamin, “Evaluation of the Reduced State-Variable TOMGRO Model using Boundary Data”, 2016 ASABE Annual Int. Meeting, 2016. http://elibrary.asabe.org/
  50. [49] R. Shamshiri, D. Ahmad, W.I.W. Ismail, H.C. Man, A. Zakaria, M. Yamin, and P. van Beveren, “Comparative evaluation of naturally ventilated screenhouse and evaporative cooled greenhouse based on optimal vapor pressure deficit”, ASABE Annual Int. Meeting, July 17–20, 2016. 10.13031/aim.20162454215, http://elibrary.asabe.org/abstract.asp?aid=46786&t=5
    ShamshiriR. AhmadD. IsmailW.I.W. ManH.C. ZakariaA. YaminM. van BeverenP. “Comparative evaluation of naturally ventilated screenhouse and evaporative cooled greenhouse based on optimal vapor pressure deficit” ASABE Annual Int. Meeting July 17–20 2016 10.13031/aim.20162454215 http://elibrary.asabe.org/abstract.asp?aid=46786&t=5
  51. How to Electronics site, DIY Soil NPK Meter using Arduino & Soil NPK Sensor, Home/Arduino Projects/Measure Soil Nutrient using Arduino & Soil NPK Sensor, 2022.
  52. Admin Electronics Articles, Measure Soil Nutrient using Arduino & Soil NPK Sensor, Last Updated: August 21, 2022, https://how2electronics.com/measure-soil-nutrient-using-arduino-soil-npk-sensor/
  53. S.J. Juneidi, “Covid-19 Tracing Contacts Apps: Technical and Privacy, International Journal of Advances in Soft Computing and its Applications,” vol. 12, no. 3, pp. 25–44, 2020.
  54. R. Shamshiri, W.I.W. Ismail, and D. Ahmad, “Experimental evaluation of air temperature, relative humidity and vapor pressure deficit in tropical lowland plant production environments”, J. Agric. Sci. Technol., vol. 19 no. 1, pp. 59–72, Advances Environ. Biol., 8(22), 5–13, 2014.
  55. [54] A. R. Abdul Rajak, “Emerging Technological Methods for Effective Farming by Cloud Computing and IoT”, Emerging Science Journal, vol. 6 no. 5, 2022. 10.28991/ESJ-2022-06-05-07
    Abdul RajakA. R. “Emerging Technological Methods for Effective Farming by Cloud Computing and IoT” Emerging Science Journal 6 5 2022 10.28991/ESJ-2022-06-05-07
  56. T.H. Short, C.M. Draper, and M.A. Donnell, “Web-based decision support system for hydroponic vegetable production”, Acta Horticulturae, Int. Soc. Hort. Sci. (ISHS), pp. 867–870, 2005. https://doi.org/10.17660/ActaHortic.2005.691.107
  57. E. Schrevens, J. Tenorio, A. Cooman, and A. Medina, “Simulation of greenhouse management for the cultivation of tomato in the high altitude tropics”, Acta Hort, 691(2002), 75–82. Emerging Science Journal, Vol 4 (2010), 2005.
  58. [57] I.H. Wayangkau, Y. Mekiuw, R. Rachmat, S. Suwarjono, H. Hariyanto, “Utilization of IoT for Soil Moisture and Temperature Monitoring System for Onion Growth”, 10.28991/esj-2021-SP1-07
    WayangkauI.H. MekiuwY. RachmatR. SuwarjonoS. HariyantoH. “Utilization of IoT for Soil Moisture and Temperature Monitoring System for Onion Growth” 10.28991/esj-2021-SP1-07
  59. J. Salahededdin Juneidi, G. A. Vouros, “Agent Role Locking (ARL): Theory for Agent Oriented Software Engineering”, IASTED International Conference SE, 2004.
  60. J.A. Tindall, H.A. Mills, and D.E. Radcliffe, “The effect of root zone temperature on nutrient uptake of tomato”, J. Plant Nutrition, vol. 13 no. 8, pp. 939–956, 1990. https://doi.org/10.1080/01904169009364127
  61. M. Triguii, S.F. Barringtoni, and L. Gauthier, “Effects of humidity on tomato”, Canadian Agricultural Eng., 41(3), 135–140, 1999.
  62. D. Van Ploeg and E. Heuvelink, “Influence of sub-optimal temperature on tomato growth and yield: a review”, J. Hort. Sci. Biotechnol., vol. 80 no. 6, pp. 652–659, 2005. https://doi.org/10.1080/14620316.2005.11511994
  63. B.H.E. Vanthoor, C. Stanghellini, E.J. Van Henten, and P.H.B. De Visser, “A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates”, Biosystems Eng., vol. 110 no. 4, pp. 363–377, 2011. http://dx.doi.org/10.1016/j.biosystemseng.2011.06.001
  64. K. Vermeulen, J.-M. Aerts, J. Dekock, P. Bleyaert, D. Berckmans, and K. Steppe, “Automated leaf temperature monitoring of glasshouse tomato plants by using a leaf energy balance model”, Computers and Electronics in Agriculture, 87, pp. 19–31, 2012. http://dx.doi.org/10.1016/j.compag.2012.05.003
  65. J.J. Salaheddin, “Machines' Fault Detection and Tolerance Using Big Data Management”, International Journal of Engineering Research and Technology, vol. 12, no. 10, pp. 1739–1750, 2019.
  66. M. Viuda-Martos, E. Sanchez-Zapata, E. Sayas-Barberá, E. Sendra, J.A. Perez-Alvarez, and J. Fernández-López, “Tomato and tomato byproducts: Human health benefits of lycopene and its application to meat products: a review”, Critical reviews in food science and nutrition, vol. 54 no. 8, pp. 1032–1049, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24499120
  67. D. Zhang, Z. Zhongdian, L. Jianming, C. Yibo, D. Qingjie, and P. Tonghua, “Regulation of vapor pressure deficit by greenhouse micro-fog systems improved growth and productivity of tomato via enhancing photosynthesis during summer season”, PloS one, vol. 10 no. 7, 2015.
  68. S. Zolnier, R.S. Gates, J. Buxton, and C. Mach, “Psychrometric and ventilation constraints for vapor pressure deficit control. Computers and Electronics in Agriculture”, vol. 26 no. 3, pp. 343–359, 2000.
  69. J. Salaheddine, “Juneidi New Computing Paradigm: Agent Orientated Engineering and Programming”, International Review on Computers and Software, vol. 9, no. 6, 2014
Language: English
Submitted on: Aug 22, 2022
Published on: Jan 3, 2023
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 S. J. Juneidi, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.