References
- Cong, L, Li, E., Qin, H., Ling, K. V. and Xue, R. 2015. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination. Sensors (Basel) 15 (3): 5722–5746.
- Davari, N., Gholami, A. and Shabani, M. 2016. Performance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-Noising Method. AIJ - Electrical & Electronics Engineering 48: 101–112.
- Dian, F. J., Vahidnia, R. and Rahmati, A. 2020. Wearables and the Internet of Things (IoT), Applications, Opportunities, and Challenges: A Survey. IEEE access 8: 69200–69211.
- Du, H., Zhang, C. and Ye, Q., et al. 2018). A Hybrid Outdoor Localization Scheme With High-position Accuracy and Low-power Consumption J Wireless Com Network, Springer, pp. 1–13.
- Erfanmanesh, M. and Abrizah, A. 2018. Mapping worldwide research on the Internet of Things during 2011–2016. Emerald Publishing Limited 36 (6): 979–992.
- Ferdinando, H., Khoswanto, H. and Purwanto, D. 2012. Embedded Kalman Filter For Inertial Measurement Unit (IMU) on the Atmega8535, Conference: Innovations in Intelligent Systems and Applications (INISTA).
- Gomez-Gil, J., Ruiz-Gonzalez, R., Alonso-Garcia, S. and Gomez-Gil, F. J. 2013. A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors, Sensors Journal 13 (11): 15307–15323.
- Han, G., Jiang, J., Zhang, C., Duong, T. Q., Guizani, M. and Karagiannidis, G. K. 2016. A Survey on Mobile Anchor Node Assisted Localization in Wireless Sensor Networks. in IEEE Communications Surveys & Tutorials 18 (3): 2220–2243.
- Hussein, M., Galal, A. I., Abd-Elrahman, E. and Zorkany, M. 2020. Internet of Things (IoT) Platform for Multi-Topic Messaging, Energies, MDPI.
- Ingabire, W., Larijani, H., Gibson, R. M. and Qureshi, A.-U.-H. 2021. Outdoor Node Localization Using Random Neural Networks for Large-Scale Urban IoT LoRa Networks. Algorithms, MDPI.
- Iswanto, Suwarno, et al 2021. Suwarno et al. IoT-based Lava Flood Early Warning System with Rainfall Intensity Monitoring and Disaster Communication Technology. Emerging Science Journal 4: 154–166.
- James, A., Seth, A. and Mukhopadhyay, Subhas C. 2020. IoT enabled sensor node: a tutorial paper. International Journal on Smart Sensing and Intelligent Systems 13: 1–18.
- Khelifi, F., Bradai, A., Benslimane, A., Rawat, P. and Atri, M. 2019. A Survey of Localization Systems in Internet of Things Springer, Mobile Net. App. 24: 761–785.
- Kumar, Vikram and Arablouei, Reza 2022. Self-Localization of IoT Devices Using Noisy Anchor Positions and RSSI Measurements Springer, Wireless Personal Communications. 124: 1623–1644.
- Lee, S.-J. and Kim, H.-S. 2019. Applying the Kalman filter to increase accuracy of location measurement, International Conference on Electronics, Information, and Communication (ICEIC).
- Li, Z., Wang, R., Gao, J. and Wang, J. 2017. An Approach to Improve the Positioning Performance of GPS/INS/UWB Integrated System with Two-Step Filter. Remote Sensing journal 10: 1–9.
- Maklouf, O., Ghila, A., Abdulla, A. and Yousef, A. 2013. Low Cost IMU / GPS Integration Using Kalman Filtering for Land Vehicle Navigation Application. International Journal of Electronics and Communication Engineering 7 (2): 184–190.
- Moreau, J., Ambellouis, S. and Ruichek, Y. 2017. Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas, Sensors Journal 17 (1): 119.
- Rizzi, M., Depari, A., Ferrari, P., Flammini, A., Rinaldi, S. and Sisinni, E. 2019. Synchronization Uncertainty Versus Power Efficiency in LoRaWAN Networks. in IEEE Transactions on Instrumentation and Measurement 68: 1101–1111.
- Romaniuk, S. and Gosiewski, Z. 2014. Kalman filter realization for orientation and position estimation on dedicated processor, acta mechanica et automatica. 8 (2): 88–94.
- Ryu, J. H., Gankhuyag, G. and Chong, K. T. 2016. Navigation System Heading and Position Accuracy Improvement through GPS and INS Data Fusion, Hindawi Publishing Corporation, Journal of Sensors 2016: 7942963.
- Sabale, Ketan and Mini, S. 2019. Anchor Node Path Planning for Localization in Wireless Sensor Networks Springer, Wireless Networks. 25 (1): 49–61.
- Saini, R., Karle, M., Shailesh Karle, U. and Karuvelil, F., et al. 2019. Implementation of Multi-Sensor GPS/IMU Integration Using Kalman Filter for Autonomous Vehicle, SAE, Symposium on International Automotive Technology.
- Shafique, K., et al. 2020. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 8: 23022–23040.
- Suroso, D. J., et al. 2022. Fingerprint Database Enhancement by Applying Interpolation and Regression Techniques for IoT-based Indoor Localization. Emerging Science Journal 4: 167–189.
- Werries, A. and Dolan, J. M. 2016. Adaptive Kalman Filtering Methods for Low-Cost GPS/INS Localization for Autonomous Vehicles, Computer Science.
- Zhu, M., Yu, F. and Xiao, S. 2019. An Unconventional Multiple Low-Cost IMU and GPS-Integrated Kinematic Positioning and Navigation Method Based on Singer Model, Sensors journal.