Have a personal or library account? Click to login
Real time IoT mobile anchor nodes outdoor localization mechanism Cover
Open Access
|Sep 2022

References

  1. Cong, L, Li, E., Qin, H., Ling, K. V. and Xue, R. 2015. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination. Sensors (Basel) 15 (3): 5722–5746.
  2. Davari, N., Gholami, A. and Shabani, M. 2016. Performance Enhancement of GPS/INS Integrated Navigation System Using Wavelet Based De-Noising Method. AIJ - Electrical & Electronics Engineering 48: 101–112.
  3. Dian, F. J., Vahidnia, R. and Rahmati, A. 2020. Wearables and the Internet of Things (IoT), Applications, Opportunities, and Challenges: A Survey. IEEE access 8: 69200–69211.
  4. Du, H., Zhang, C. and Ye, Q., et al. 2018). A Hybrid Outdoor Localization Scheme With High-position Accuracy and Low-power Consumption J Wireless Com Network, Springer, pp. 1–13.
  5. Erfanmanesh, M. and Abrizah, A. 2018. Mapping worldwide research on the Internet of Things during 2011–2016. Emerald Publishing Limited 36 (6): 979–992.
  6. Ferdinando, H., Khoswanto, H. and Purwanto, D. 2012. Embedded Kalman Filter For Inertial Measurement Unit (IMU) on the Atmega8535, Conference: Innovations in Intelligent Systems and Applications (INISTA).
  7. Gomez-Gil, J., Ruiz-Gonzalez, R., Alonso-Garcia, S. and Gomez-Gil, F. J. 2013. A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors, Sensors Journal 13 (11): 15307–15323.
  8. Han, G., Jiang, J., Zhang, C., Duong, T. Q., Guizani, M. and Karagiannidis, G. K. 2016. A Survey on Mobile Anchor Node Assisted Localization in Wireless Sensor Networks. in IEEE Communications Surveys & Tutorials 18 (3): 2220–2243.
  9. Hussein, M., Galal, A. I., Abd-Elrahman, E. and Zorkany, M. 2020. Internet of Things (IoT) Platform for Multi-Topic Messaging, Energies, MDPI.
  10. Ingabire, W., Larijani, H., Gibson, R. M. and Qureshi, A.-U.-H. 2021. Outdoor Node Localization Using Random Neural Networks for Large-Scale Urban IoT LoRa Networks. Algorithms, MDPI.
  11. Iswanto, Suwarno, et al 2021. Suwarno et al. IoT-based Lava Flood Early Warning System with Rainfall Intensity Monitoring and Disaster Communication Technology. Emerging Science Journal 4: 154–166.
  12. James, A., Seth, A. and Mukhopadhyay, Subhas C. 2020. IoT enabled sensor node: a tutorial paper. International Journal on Smart Sensing and Intelligent Systems 13: 1–18.
  13. Khelifi, F., Bradai, A., Benslimane, A., Rawat, P. and Atri, M. 2019. A Survey of Localization Systems in Internet of Things Springer, Mobile Net. App. 24: 761–785.
  14. Kumar, Vikram and Arablouei, Reza 2022. Self-Localization of IoT Devices Using Noisy Anchor Positions and RSSI Measurements Springer, Wireless Personal Communications. 124: 1623–1644.
  15. Lee, S.-J. and Kim, H.-S. 2019. Applying the Kalman filter to increase accuracy of location measurement, International Conference on Electronics, Information, and Communication (ICEIC).
  16. Li, Z., Wang, R., Gao, J. and Wang, J. 2017. An Approach to Improve the Positioning Performance of GPS/INS/UWB Integrated System with Two-Step Filter. Remote Sensing journal 10: 1–9.
  17. Maklouf, O., Ghila, A., Abdulla, A. and Yousef, A. 2013. Low Cost IMU / GPS Integration Using Kalman Filtering for Land Vehicle Navigation Application. International Journal of Electronics and Communication Engineering 7 (2): 184–190.
  18. Moreau, J., Ambellouis, S. and Ruichek, Y. 2017. Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas, Sensors Journal 17 (1): 119.
  19. Rizzi, M., Depari, A., Ferrari, P., Flammini, A., Rinaldi, S. and Sisinni, E. 2019. Synchronization Uncertainty Versus Power Efficiency in LoRaWAN Networks. in IEEE Transactions on Instrumentation and Measurement 68: 1101–1111.
  20. Romaniuk, S. and Gosiewski, Z. 2014. Kalman filter realization for orientation and position estimation on dedicated processor, acta mechanica et automatica. 8 (2): 88–94.
  21. Ryu, J. H., Gankhuyag, G. and Chong, K. T. 2016. Navigation System Heading and Position Accuracy Improvement through GPS and INS Data Fusion, Hindawi Publishing Corporation, Journal of Sensors 2016: 7942963.
  22. Sabale, Ketan and Mini, S. 2019. Anchor Node Path Planning for Localization in Wireless Sensor Networks Springer, Wireless Networks. 25 (1): 49–61.
  23. Saini, R., Karle, M., Shailesh Karle, U. and Karuvelil, F., et al. 2019. Implementation of Multi-Sensor GPS/IMU Integration Using Kalman Filter for Autonomous Vehicle, SAE, Symposium on International Automotive Technology.
  24. Shafique, K., et al. 2020. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 8: 23022–23040.
  25. Suroso, D. J., et al. 2022. Fingerprint Database Enhancement by Applying Interpolation and Regression Techniques for IoT-based Indoor Localization. Emerging Science Journal 4: 167–189.
  26. Werries, A. and Dolan, J. M. 2016. Adaptive Kalman Filtering Methods for Low-Cost GPS/INS Localization for Autonomous Vehicles, Computer Science.
  27. Zhu, M., Yu, F. and Xiao, S. 2019. An Unconventional Multiple Low-Cost IMU and GPS-Integrated Kinematic Positioning and Navigation Method Based on Singer Model, Sensors journal.
Language: English
Submitted on: Mar 26, 2022
Published on: Sep 14, 2022
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 M. Zorkany, Emad Abd-Elrahman, Ghazal A. Fahmy, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.