Nonlinear partial differential equations (NLPDEs) are extensively utilized across multiple fields, including mathematical biology, chemistry, engineering, plasma physics, quantum mechanics, and fluid dynamics [1]. In order to explore and explain nonlinear effects, researchers in mathematics and physics focus on obtaining exact solutions of the partial differential equations that govern such systems [2, 3]. The study of complex nonlinear partial differential equations has garnered significant academic interest, driven by the inherent challenges of solving them and their importance in understanding intricate natural phenomena [4]. Significant advancements have been observed in the development of effective methods for obtaining accurate solutions to NLPDEs in recent years, including Hirota direct method [5, 6], the new extended auxiliary equation method [7], the new extended direct algebraic method [8], the sin-Gordon expansion method [9], modified simple equation method [10], the sub-ODE method [11], F-expansion method [12], the (m + G′/G) expansion method [13], the improved tan(ϕ(ξ)/2)-expansion method [14], the Bernoulli sub-equation function method [15], Jacobi elliptic function method [16, 17], the unified Riccati equation expansion method [18, 19], the modified Sardar sub-equation approach [20, 21], and many more.
A stochastic process mathematically represents the evolution of a random phenomenon over time. Stochastic differential equations (SDEs) extend this idea by integrating random fluctuations into system dynamics. Similarly, stochastic partial differential equations (SPDEs) incorporate random variables or noise functions, providing suitable mathematical representations for complex systems influenced by uncertainty. In nonlinear optics, optical solitons, widely used in high-speed data transmission, are subject to stochastic disturbances from external influences. This necessitates the formulation of differential equations with stochastic elements for accurate modeling. The stochastic nonlinear Schrödinger equation (SNLSE) provides a mathematical framework for analyzing such systems, especially in quantum mechanics and nonlinear optics [22]. It describes the evolution of a quantum field that incorporates both nonlinear interactions and stochastic effects. Beyond optics, stochastic networked linear systems are also employed to capture random influences across diverse fields such as chemistry, physics, and electrical engineering. Increasingly, the SNLSE has been applied in areas including physics modeling, climate research, and information technology, where it serves as a powerful tool for constructing mathematical models of complex phenomena.
The governing model under consideration is the stochastic generalized nonlinear Schrödinger equation (SGNLSE), as described in [23]:
The aim of this paper is to employ the
In addition to classical expansion approaches, several modern analytical techniques have been developed for constructing exact solutions of NLPDEs. Kudryashov proposed effective methods for obtaining exact solitary solutions to the generalized Kuramoto-Sivashinsky equation, providing an important basis for further analytical investigations [30, 31]. Later, Kudryashov et al. [32] applied Painlevé analysis and the first integral method to the traveling wave reductions of a nonlinear equation, namely, the Radhakrishnan-Kundu-Lakshmanan equation. Demina and Kudryashov [33] presented a general method for constructing explicit meromorphic solutions of autonomous nonlinear ordinary differential equations based on the analysis of Laurent series and singularity structures. In a related but more specific study, they applied this approach to derive exact meromorphic solutions of the Kawahara equation, demonstrating its effectiveness for higher-order dispersive wave equations [34]. In another contribution, Kudryashov presented a robust approach for finding exact solutions to nonlinear differential equations, emphasizing its generality and efficiency [35]. Our study incorporates the
The rest of this paper is organized as follows. In Section 2, the core procedures of the
Suppose a NPDE follows the following form:
Family 1: When A2+B2−C2 < 0 and B−C ≠ 0, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{A \over {B - C}} - \left( {{{\sqrt { - {A^2} - {B^2} + {C^2}} } \over {B - C}}} \right)\tan \left( {{{\sqrt { - {A^2} - {B^2} + {C^2}} } \over 2}\xi } \right)} \right). Family 2: In case A2+B2−C2 > 0 and B−C ≠ 0, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{A \over {B - C}} + \left( {{{\sqrt {{A^2} + {B^2} - {C^2}} } \over {B - C}}} \right)\tanh \left( {{{\sqrt {{A^2} + {B^2} - {C^2}} } \over 2}\xi } \right)} \right). Family 3: In case A2+B2−C2 > 0, B ≠ 0 and C = 0, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{A \over {B - C}} + {{\sqrt {{B^2} - {A^2}} } \over B}\tanh \left( {{{\sqrt {{B^2} - {A^2}} } \over 2}\xi } \right)} \right). Family 4: In case A2+B2−C2 < 0,C ≠ 0 and B = 0, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( { - {A \over C} + {{\sqrt {{C^2} - {A^2}} } \over C}\tan \left( {{{\sqrt {{C^2} - {A^2}} } \over 2}\xi } \right)} \right). Family 5: In case A2+B2−C2 > 0, B−C ≠ 0 and A = 0, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {\sqrt {{{B + C} \over {B - C}}} \tanh \left( {{{\sqrt {{B^2} - {C^2}} } \over 2}\xi } \right)} \right). Family 6: In case A = 0 and C = 0, the corresponding solution is given by
\varpi (\xi ) = {\tan ^{ - 1}}\left( {{{2{e^{B\xi }}} \over {{e^{2B\xi }} + 1}}} \right). Family 7: In case B = C = 0, the corresponding solution is given by
\varpi (\xi ) = {\tan ^{ - 1}}\left( {{{2{e^{A\xi }}} \over {{e^{2A\xi }} + 1}}} \right). Family 8: In case A2+B2 = C2, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{{A\xi + 2} \over {(B - C)\xi }}} \right). Family 9: In case A = B = C = kA, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{e^{kA\xi }} - 1} \right). Family 10: In case A = C = kA and B = −kA, the corresponding solution is given by
\varpi (\xi ) = - 2{\tan ^{ - 1}}\left( {{{{e^{kA\xi }}} \over { - 1 + {e^{kA\xi }}}}} \right). Family 11: In case C = A, the corresponding solution is given by
\varpi (\xi ) = - 2{\tan ^{ - 1}}\left( {{{(A + B){e^{B\xi }} - 1} \over {(A - B){e^{B\xi }} - 1}}} \right). Family 12: In case A = C, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{{(B + A){e^{B\xi }} + 1} \over {(B - A){e^{B\xi }} - 1}}} \right). Family 13: In case C = −A, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{{B - A + {e^{B\xi }}} \over { - B - A + {e^{B\xi }}}}} \right). Family 14: In case B = −C, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{{A{e^{A\xi }}} \over {1 - C{e^{A\xi }}}}} \right). Family 15: In case B = 0 and A = C, the corresponding solution is given by
\varpi (\xi ) = - 2{\tan ^{ - 1}}\left( {{{C\xi + 2} \over {C\xi }}} \right). Family 16: In case A = 0 while B = C, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}(C\xi ). Family 17: In case A = 0 while B = −C, the corresponding solution is given by
\varpi (\xi ) = - 2{\tan ^{ - 1}}\left( {{1 \over {C\xi }}} \right). Family 18: In case A = B = 0, the corresponding solution is given by
\varpi (\xi ) = C\xi + \varepsilon . Family 19: In case B = C, the corresponding solution is given by
\varpi (\xi ) = 2{\tan ^{ - 1}}\left( {{{{e^{A\xi }} - C} \over A}} \right).
This part focuses on elucidating fundamental ideas of mention technique, which is employed to determine precise solutions of non-linear equations. Let us examine second order of linear ODE.
Case 1: When δ < 0, the general solution corresponding to Eq.(6) is given by the following expression:
Case 2: When δ > 0, the general solution corresponding to Eq.(6) is given by the following expression:
Case 3: When δ = 0, the general solution corresponding to Eq.(6) is given by the following expression:
Here A1, A2 are constants.
The main steps of the ( G′/G, 1/G)-expansion method are as follows:
Step 1. Apply the coordinate transformation ξ = x−vt and assume q(x, t) = Q(ξ). Under this transformation, Eq.(2) is reduced to ODE in terms of Q(ξ), given by:
Step 2. Assume that the solution to ODE Eq.(15) can be represented as a polynomial involving the functions ϕ and ψ in the following form:
Step 3. By substituting Eq.(6) into Eq.(15) and applying Eq.(8) and Eq.(10), the left-hand side of Eq.(15) is transformed into a polynomial in ϕ and ψ. Setting each coefficient of this polynomial to zero produces a system of algebraic equations for the constants ai (i = 0, ⋯, n), bi (i = 1, ⋯, n), δ (with δ < 0), ρ, A1, and A2.
Step 4. Using computational program, the system of algebraic equations obtained in Step 3 is solved. By substituting the computed values of ai (for i = 0, ⋯, n), bi (for i = 1, ⋯, n), together with the parameters δ, ρ, A1, and A2 into Eq.(16), the travelling wave solutions are derived. These solutions are expressed in terms of hyperbolic functions, corresponding to the form presented in Eq.(15).
Step 5. By applying a similar procedure as in Steps 3 and 4, Eq.(16) is substituted into Eq.(15). Then, by making use of equations (8) and (12) (or alternatively, equations (8) and (14)), the travelling wave solutions of equation (15) are obtained. These solutions are expressed either in terms of trigonometric functions or as rational functions, depending on the specific case.
This part of the study employs the subsequent transformation to get analytical solutions for Eq.(1)
Set 1: When
Solution 1: When −A2−B2+C2 > 0, the singular periodic solution corresponding to Family 1 is obtained
23 q(x,t) = \left( {{{\sqrt {( - 1 - 6k\sigma )\left( { - {A^2} - {B^2} + {C^2}} \right)} } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right)\tan \left( {{1 \over 4}\sqrt { - {A^2} - {B^2} + {C^2}} \left( {4kt + 2x + \left( {{A^2} + {B^2} - {C^2}} \right)t\sigma + 6{k^2}t\sigma } \right)} \right) \times {{\rm{e}}^{ - {1 \over 2}\left( {{B^2}t - {C^2}t + 2{k^2}t + 2kx + 3{B^2}kt\sigma - 3{C^2}kt\sigma + 2{k^3}t\sigma + {A^2}(t + 3kt\sigma ) - 2\sigma W(t)} \right)}}. Solution 2: When A2+B2−C2 > 0, the dark soliton solution corresponding to Family 2 is obtained
24 q(x,t) = \left( { - {{\sqrt {( - 1 - 6k\sigma )\left( {{A^2} + {B^2} - {C^2}} \right)} } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right)\tanh \left( {{1 \over 4}\sqrt {{A^2} + {B^2} - {C^2}} \left( {4kt + 2x + \left( {{A^2} + {B^2} - {C^2}} \right)t\sigma + 6{k^2}t\sigma } \right)} \right) \times {{\rm{e}}^{ - {1 \over 2}{\rm{i}}\left( { - {C^2}t + 2{k^2}t + 2kx - 3{C^2}kt\sigma + 2{k^3}t\sigma - 2W(t)\sigma + {A^2}(t + 3kt\sigma ) + {B^2}(t + 3kt\sigma )} \right)}}. Solution 3: The dark soliton solution corresponding to Family 3 is obtained
25 q({\rm{x}},{\rm{t}}) = \left( { - {{\sqrt {{A^2} + {B^2}} \sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right)\tanh \left( {{1 \over 4}\sqrt {{A^2} + {B^2}} \left( {4kt + 2x + \left( {{A^2} + {B^2}} \right)t\sigma + 6{k^2}t\sigma } \right)} \right) \times {{\rm{e}}^{ - {1 \over 2}{\rm{i}}\left( {{A^2}(t + 3kt\sigma ) + {B^2}(t + 3kt\sigma ) + 2\left( {{k^2}t + kx + {k^3}t\sigma - W(t)\sigma } \right)} \right)}}. Solution 4: The singular periodic solution corresponding to Family 4 is obtained
26 q({\rm{x}},{\rm{t}}) = \left( {{{\sqrt {( - 1 - 6k\sigma )\left( { - {A^2} + {C^2}} \right)} } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right)\tan \left( {{1 \over 4}\sqrt { - {A^2} + {C^2}} \left( {4kt + 2x + \left( {{A^2} - {C^2}} \right)t\sigma + 6{k^2}t\sigma } \right)} \right) \times {{\rm{e}}^{ - {1 \over 2}{\rm{i}}\left( {{A^2}(t + 3kt\sigma ) - {C^2}(t + 3kt\sigma ) + 2\left( {{k^2}t + kx + {k^3}t\sigma - W(t)\sigma } \right)} \right)}}. Solution 5: When B2 − C2 > 0, the dark soliton solution corresponding to Family 5 is obtained
27 q({\rm{x}},{\rm{t}}) = \left( {{{\sqrt {( - 1 - 6k\sigma )\left( {{B^2} - {C^2}} \right)} } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right)\tanh \left( {{1 \over 4}\sqrt {{B^2} - {C^2}} \left( {4kt + 2x + \left( {{B^2} - {C^2}} \right)t\sigma + 6{k^2}t\sigma } \right)} \right) \times {{\rm{e}}^{ - {1 \over 2}{\rm{i}}\left( { - {C^2}t + 2{k^2}t + 2kx - 3{C^2}kt\sigma + 2{k^3}t\sigma + {B^2}(t + 3kt\sigma ) - 2\sigma W(t)} \right)}}. Solution 6: The singular soliton solution corresponding to Family 8 is obtained
28 q({\rm{x}},{\rm{t}}) = \left( { - {{\sqrt 2 \sqrt { - 1 - 6k\sigma } } \over {\left( {2kt + x + 3{k^2}t\sigma } \right)\sqrt {1 + 2k{\gamma _1}\sigma } }}} \right) \times {{\rm{e}}^{ - {\rm{i}}k\left( {kt + x + {k^2}t\sigma } \right) + {\rm{i}}\sigma W(t)}}. Solution 7: The dark soliton solution corresponding to Family 11 is obtained
29 q({\rm{x}},{\rm{t}}) = \left( {{{A\sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }} - {{(A - B)\left( { - 1 + (A + B){{\rm{e}}^{B\left( {x - t\left( { - 2k - {1 \over 2}\left( {{B^2} + 6{k^2}} \right)\sigma } \right)} \right)}}} \right)\sqrt { - 1 - 6k\sigma } } \over {\left( { - 1 + (A - B){{\rm{e}}^{B\left( {x - t\left( { - 2k - {1 \over 2}\left( {{B^2} + 6{k^2}} \right)\sigma } \right)} \right)}}} \right)\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right) \times {{\rm{e}}^{{\rm{i}}\left( { - kx + W(t)\sigma - t{\sigma ^2} + t\left( { - {k^2} - {k^3}\sigma + {\sigma ^2} - {1 \over 2}{B^2}(1 + 3k\sigma )} \right)} \right)}}. Solution 8: The dark soliton solution corresponding to Family 12 is obtained
30 q({\rm{x}},{\rm{t}}) = \left( {{{C\sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }} + {{( - B + C)\left( {1 + (B + C){{\rm{e}}^{B\left( {x - t\left( { - 2k - {1 \over 2}\left( {{B^2} + 6{k^2}} \right)\sigma } \right)} \right)}}} \right)\sqrt { - 1 - 6k\sigma } } \over {\left( { - 1 + (B - C){{\rm{e}}^{B\left( {x - t\left( { - 2k - {1 \over 2}\left( {{B^2} + 6{k^2}} \right)\sigma } \right)} \right)}}} \right)\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right) \times {{\rm{e}}^{{\rm{i}}\left( { - kx + W(t)\sigma - t{\sigma ^2} + t\left( { - {k^2} - {k^3}\sigma + {\sigma ^2} - {1 \over 2}{B^2}(1 + 3k\sigma )} \right)} \right)}}. Solution 9: The singular soliton solution corresponding to Family 13 is obtained
31 q({\rm{x}},{\rm{t}}) = \left( {{{A\sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }} - {{(A + B)\left( { - A + B + {{\rm{e}}^{B\left( {x - t\left( { - 2k - {1 \over 2}\left( {{B^2} + 6{k^2}} \right)\sigma } \right)} \right)}}} \right)\sqrt { - 1 - 6k\sigma } } \over {\left( { - A - B + {{\rm{e}}^{B\left( {x - t\left( { - 2k - {1 \over 2}\left( {{B^2} + 6{k^2}} \right)\sigma } \right)} \right)}}} \right)\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right) \times {{\rm{e}}^{{\rm{i}}\left( { - kx + W(t)\sigma - t{\sigma ^2} + t\left( { - {k^2} - {k^3}\sigma + {\sigma ^2} - {1 \over 2}{B^2}(1 + 3k\sigma )} \right)} \right)}}. Solution 10: The dark soliton solution corresponding to Family 14 is obtained
32 q({\rm{x}},{\rm{t}}) = \left( {{{A\sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }} + {{2AC{{\rm{e}}^{A\left( {x - t\left( { - 2k - {1 \over 2}\left( {{A^2} + 6{k^2}} \right)\sigma } \right)} \right)}}\sqrt { - 1 - 6k\sigma } } \over {\left( {1 - C{{\rm{e}}^{A1\left( {x - t\left( { - 2k - {1 \over 2}\left( {{A^2} + 6{k^2}} \right)\sigma } \right)} \right)}}} \right)\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right) \times {{\rm{e}}^{{\rm{i}}\left( { - kx + W(t)\sigma - t{\sigma ^2} + t\left( { - {k^2} - {k^3}\sigma + {\sigma ^2} - {1 \over 2}{A^2}(1 + 3k\sigma )} \right)} \right)}}. Solution 11: The singular soliton solution corresponding to Family 15 is obtained
33 q({\rm{x}},{\rm{t}}) = \left( {{{C\sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }} - {{\sqrt { - 1 - 6k\sigma } (2 + C(x + kt(2 + 3k\sigma )))} \over {\sqrt {2 + 4k{\gamma _1}\sigma } (x + kt(2 + 3k\sigma ))}}} \right) \times {{\rm{e}}^{{\rm{i}}\left( { - kx + W(t)\sigma - t{\sigma ^2} + t\left( { - {k^2} - {k^3}\sigma + {\sigma ^2}} \right)} \right)}}. Solution 12: The singular soliton solution corresponding to Family 17 is obtained
34 q({\rm{x}},{\rm{t}}) = \left( { - {{2\sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } (x + kt(2 + 3k\sigma ))}}} \right) \times {{\rm{e}}^{{\rm{i}}\left( { - kx + W\sigma - t{\sigma ^2} + t\left( { - {k^2} - {k^3}\sigma + {\sigma ^2}} \right)} \right)}}. Solution 13: The singular soliton solution corresponding to Family 18 is obtained
35 q({\rm{x}},{\rm{t}}) = \left( {{{C\sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }}} \right)\tan \left( {{1 \over 2}C\left( {x - t\left( {{{{C^2}\sigma } \over 2} - k(2 + 3k\sigma )} \right)} \right)} \right) \times {{\rm{e}}^{{\rm{i}}\left( { - kx + W(t)\sigma - t{\sigma ^2} + t\left( { - {k^2} - {k^3}\sigma + {\sigma ^2} + {1 \over 2}{C^2}(1 + 3k\sigma )} \right)} \right)}}.
Set 2: In the case
Solution 1: When −A12 − B12+C12 > 0, the following singular periodic solution corresponding to Family 1 is obtained
37 q(x,t) = \left( {\sqrt {{3 \over 2}} {{\sqrt { - {A^2} - {B^2} + {C^2}} } \over {\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right) \times {{\rm{e}}^{{1 \over 6}{\rm{i}}\left( { - {{3\left( {{A^2} + {B^2} - {C^2}} \right)t\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {2{\gamma _2}}} + {{t\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {36\gamma _2^3{\sigma ^2}}} + {{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {{\gamma _2}\sigma }} + 6W(t)\sigma } \right)}} \times \tan \left( {{1 \over 2}\sqrt { - {A^2} - {B^2} + {C^2}} \left( {x + {{t\left( {9 + \gamma _1^2 - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + 3{\gamma _2}\left( {2 + {\gamma _2}\left( { - 1 + 2\left( {{A^2} + {B^2} - {C^2}} \right){\sigma ^2}} \right)} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)} \right). Solution2: When A2+B2−C2 > 0, the dark soliton solution corresponding to Family 2 is obtained
38 q(x,t) = \left( { - \sqrt {{3 \over 2}} {{\sqrt {{A^2} + {B^2} - {C^2}} } \over {\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right) \times {{\rm{e}}^{{1 \over 6}{\rm{i}}\left( { - {{3\left( {{A^2} + {B^2} - {C^2}} \right)t\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {2{\gamma _2}}} + {{t\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {36{\gamma _2}^3{\sigma ^2}}} + {{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {{\gamma _2}\sigma }} + 6W(t)\sigma } \right)}} \times \tanh \left( {{1 \over 2}\sqrt {{A^2} + {B^2} - {C^2}} \left( {x + {{t\left( {9 + {\gamma _1}^2 - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + 3{\gamma _2}\left( {2 + {\gamma _2}\left( { - 1 + 2\left( {{A^2} + {B^2} - {C^2}} \right){\sigma ^2}} \right)} \right)} \right)} \over {12{\gamma _2}^2\sigma }}} \right)} \right). Solution 3: The dark soliton solution corresponding to Family 3 is obtained
39 q({\rm{x}},{\rm{t}}) = \left( { - \sqrt {{3 \over 2}} {{\sqrt {{A^2} + {B^2}} } \over {\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right) \times {{\rm{e}}^{{1 \over 6}\left( { - {{3\left( {{A^2} + {B^2}} \right)t\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {2{\gamma _2}}} + {{t\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {36{\gamma _2}^3{\sigma ^2}}} + {{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {{\gamma _2}\sigma }} + \sigma W(t)\sigma } \right)}} \times \tanh \left( {{1 \over 2}\sqrt {{A^2} + {B^2}} \left( {x + {{t\left( {9 + {\gamma _1}^2 - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + 3{\gamma _2}\left( {2 + {\gamma _2}\left( { - 1 + 2\left( {{A^2} + {B^2}} \right){\sigma ^2}} \right)} \right)} \right)} \over {12{\gamma _2}^2\sigma }}} \right)} \right). Solution 4: The singular periodic solution corresponding to Family 4 is obtained
40 q({\rm{x}},{\rm{t}}) = \left( {\sqrt {{3 \over 2}} {{\sqrt { - {A^2} + {C^2}} } \over {\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right) \times {{\rm{e}}^{{1 \over 6}{\rm{i}}\left( { - {{3\left( {{A^2} + {C^2}} \right)t\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {2{\gamma _2}}} + {{t\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {36{\gamma _2}^3{\sigma ^2}}} + {{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {{\gamma _2}\sigma }} + 6W(t)\sigma } \right)}} \times \tan \left( {{1 \over 2}\sqrt { - {A^2} + {C^2}} \left( {x + {{t\left( {9 + \gamma _1^2 - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + 3{\gamma _2}\left( {2 + {\gamma _2}\left( { - 1 + 2\left( {{A^2} - {C^2}} \right){\sigma ^2}} \right)} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)} \right). Solution 5: The dark soliton solution corresponding to Family 5 is obtained
41 q({\rm{x}},{\rm{t}}) = \left( { - \sqrt {{3 \over 2}} {{\sqrt {{B^2} - {C^2}} } \over {\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right) \times {{\rm{e}}^{{1 \over 6}{\rm{i}}\left( {{{3\left( {{A^2} - {C^2}} \right)t\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {2{\gamma _2}}} + {{t\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {36{\gamma _2}^3{\sigma ^2}}} + {{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {{\gamma _2}\sigma }} + 6w(t)\sigma } \right)}} \times \tanh \left( {{1 \over 2}\sqrt {{B^2} - {C^2}} \left( {x + {{t\left( {9 + {\gamma _1}^2 - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + 3{\gamma _2}\left( {2 + {\gamma _2}\left( { - 1 + 2\left( {{A^2} - {C^2}} \right){\sigma ^2}} \right)} \right)} \right.} \over {12{\gamma _2}^2\sigma }}} \right)} \right). Solution 6: The singular soliton solution corresponding to Family 8 is obtained
42 q({\rm{x}},{\rm{t}}) = \left( { - {{12\sqrt 6 {\gamma _2}^2\sigma } \over {\sqrt { - {\gamma _1} - {\gamma _2}} \left( {t\left( {9 + {\gamma _1}^2 + 6{\gamma _2} - 3{\gamma _2}^2 - 2{\gamma _1}\left( {3 + {\gamma _2}} \right)} \right) + 12x{\gamma _2}^2\sigma } \right)}}} \right) \times {{\rm{e}}^{{{{\rm{i}}\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)\left( {t\left( {9 + {\gamma _1}^2 + 12{\gamma _2} - 5{\gamma _2}^2 - 2{\gamma _1}\left( {3 + 2{\gamma _2}} \right)} \right) + 36x{\gamma _2}^2\sigma } \right)} \over {216{\gamma _2}^3{\sigma ^2}}} + {\rm{i}}\sigma W(t)}}. Solution 7: The dark soliton solution corresponding to Family 11 is obtained
43 q({\rm{x}},{\rm{t}}) = \left( {{{A\sqrt { - 1 - 6k\sigma } } \over {\sqrt {2 + 4k{\gamma _1}\sigma } }} - {{\sqrt {{3 \over 2}} (A - B)\left( { - 1 + (A + B){{\rm{e}}^{B\left( {x + {{t\left( {9 + \gamma _1^2 + 6{\gamma _2} - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + \gamma _2^2\left( { - 3 + 6{B^2}{\sigma ^2}} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)}}} \right)} \over {\left. {\left( { - 1 + (A - B){{\rm{e}}^{B\left( {x + {{t\left( {9 + \gamma _1^2 + 6{\gamma _2} - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + \gamma _2^2\left( { - 3 + 6{B^2}{\sigma ^2}} \right)} \right)} \over {12{\gamma _2}^2\sigma }}} \right)}}} \right)\sqrt { - {\gamma _1} - {\gamma _2}} } \right)}}} \right)\left. {{{\rm{e}}^{{\rm{i}}\left( {{{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {6{\gamma _2}\sigma }} + W(t)\sigma - t{\sigma ^2} + t\left( { - {{{B^2}\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {4{\gamma _2}}} + {{\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {216{\gamma _2}^3{\sigma ^2}}} + {\sigma ^2}} \right)} \right)}}} \right). Solution 8: The dark soliton solution corresponding to Family 12 is obtained
44 q({\rm{x}},{\rm{t}}) = \left( {{{\sqrt {{3 \over 2}} C} \over {\sqrt { - {\gamma _1} - {\gamma _2}} }} + {{\sqrt {{3 \over 2}} ( - B + C)\left( {1 + (B + C){{\rm{e}}^{B\left( {x + {{\left. {t + 9 + \gamma _1^2 + 6{\gamma _2} - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + \gamma _2^2\left( { - 3 + 6{B^2}{\sigma ^2}} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)}}} \right)} \over {\left( { - 1 + (B - C{{\rm{e}}^{B\left( {x + {{t\left( {9 + \gamma _1^2 + 6{\gamma _2} - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + \gamma _2^2\left( { - 3 + 6{B^2}{\sigma ^2}} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)}}} \right)\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right){{\rm{e}}^{\left( {{{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {6{\gamma _2}\sigma }} + w(t)\sigma - t{\sigma ^2} + t\left( { - {{{B^2}\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {4{\gamma _2}}} + {{\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {216\gamma _2^2{\sigma ^2}}} + {\sigma ^2}} \right)} \right)}}. Solution 9: The singular soliton solution corresponding to Family 13 is obtained
45 q({\rm{x}},{\rm{t}}) = \left( {{{\sqrt {{3 \over 2}} A} \over {\sqrt { - {\gamma _1} - {\gamma _2}} }} - {{\sqrt {{3 \over 2}} (A + B)\left( { - A + B + {{\rm{e}}^{B\left( {x + {{\left. {t + 9 + \gamma _1^2 + 6{\gamma _2} - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + \gamma _2^2\left( { - 3 + 6{B^2}{\sigma ^2}} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)}}} \right)} \over {\left( { - A - B + {{\rm{e}}^{B\left( {x + {{t\left( {9 + \gamma _1^2 + 6{\gamma _2} - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + \gamma _2^2\left( { - 3 + 6{B^2}{\sigma ^2}} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)}}} \right)\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right){{\rm{e}}^{\left( {{{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {6{\gamma _2}\sigma }} + w(t)\sigma - t{\sigma ^2} + t\left( { - {{{B^2}\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {4{\gamma _2}}} + {{\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {216\gamma _2^2{\sigma ^2}}} + {\sigma ^2}} \right)} \right)}}. Solution 10: The dark soliton solution corresponding to Family 14 is obtained
46 q({\rm{x}},{\rm{t}}) = \left( {{{\sqrt {{3 \over 2}} A} \over {\sqrt { - {\gamma _1} - {\gamma _2}} }} + {{\sqrt 6 AC{{\rm{e}}^{A\left( {x + {{t\left( {9 + \gamma _1^2 + 6{\gamma _2} - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + \gamma _2^2\left( { - 3 + 6{B^2}{\sigma ^2}} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)}}} \over {\left( {1 - C{{\rm{e}}^{\left. {A \times + {{\left. {t + \gamma _1^2 + 6{\gamma _2} - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) + \gamma _2^2\left( { - 3 + 6{B^2}{\sigma ^2}} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)}}} \right)\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right){e^{i\left( {{{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {6{\gamma _2}\sigma }} + w(t)\sigma - t{\sigma ^2} + t\left( { - {{{A^2}\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {4{\gamma _2}}} + {{\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {216\gamma _2^2{\sigma ^2}}} + {\sigma ^2}} \right)} \right)}}. Solution 11: The singular soliton solution corresponding to Family 15 is obtained
47 q({\rm{x}},{\rm{t}}) = \left( {{{\sqrt {{3 \over 2}} C} \over {\sqrt { - {\gamma _1} - {\gamma _2}} }} - {{\sqrt {{3 \over 2}} \left( {2 + C\left( {x - {{t\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)\left( {3 - {\gamma _1} + 3{\gamma _2}} \right)} \over {12{\gamma _2}^2\sigma }}} \right)} \right)} \over {\sqrt { - {\gamma _1} - {\gamma _2}} \left( {x - {{t\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)\left( {3 - {\gamma _1} + 3{\gamma _2}} \right)} \over {12{\gamma _2}^2\sigma }}} \right)}}} \right) \times {{\rm{e}}^{\left( {{{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {6{\gamma _2}\sigma }} + W\sigma - t{\sigma ^2} + t\left( {{{\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {216\gamma _2^3{\sigma ^2}}} + {\sigma ^2}} \right)} \right)}}. Solution 12: The singular soliton solution corresponding to Family 17 is obtained
48 q({\rm{x}},{\rm{t}}) = \left( { - {{\sqrt 6 } \over {\sqrt { - {\gamma _1} - {\gamma _2}} \left( {x - {{t\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)\left( {3 - {\gamma _1} + 3{\gamma _2}} \right)} \over {12\gamma _2^2\sigma }}} \right)}}} \right) \times {{\rm{e}}^{\left( {{{x\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {6{\gamma _2}\sigma }} + w\sigma - t{\sigma ^2} + t\left( {{{\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {216\gamma _2^2{\sigma ^2}}} + {\sigma ^2}} \right)} \right)}}. Solution 13: The singular periodic solution corresponding to Family 18 is obtained
49 q({\rm{x}},{\rm{t}}) = \left( {\sqrt {{3 \over 2}} {C \over {\sqrt { - {\gamma _1} - {\gamma _2}} }}} \right)\tan \left( {{1 \over 2}C\left( {x + {{t\left( {9 + \gamma _1^2 - 2{\gamma _1}\left( {3 + {\gamma _2}} \right) - 3y2\left( { - 2 + {\gamma _2} + 2{C^2}{\gamma _2}{\sigma ^2}} \right)} \right)} \over {12\gamma _2^2\sigma }}} \right)} \right) \times {{\rm{e}}^{\left( {{{\left. {x - 3 + {\gamma _1} + {\gamma _2}} \right)} \over {6{\gamma _2}\sigma }} + W(t)\sigma - t{\sigma ^2} + t\left( {{{{C^2}\left( {3 - {\gamma _1} + {\gamma _2}} \right)} \over {4{\gamma _2}}} + {{\left( { - 3 + {\gamma _1} - 5{\gamma _2}} \right){{\left( { - 3 + {\gamma _1} + {\gamma _2}} \right)}^2}} \over {216\gamma _2^3{\sigma ^2}}} + {\sigma ^2}} \right)} \right)}}.
In this part, we will apply the (G′/G, 1/G)-expansion method to find the exact traveling wave solutions of Eq.(1). Balancing the terms of Q3 and Q″ in Eq.(18) and Eq.(20) gives n = 1. Putting n into Eq.(16), we derive
Case 1: When δ < 0. By putting Eq.(50) into Eq.(18) and Eq.(20) and applying Eq.(8) and Eq.(10), the lefthand side of equation Eq.(18) and Eq.(20) transforms into a polynomial in ψ and ϕ. Collecting each coefficient of this polynomial to zero yields in a system of algebraic equations involving a0, a1, B1, ρ, δ, A1, and A2. Utilizing package program, we obtain the desired solutions as follows
Set 1:
Set 2:
Set 3:
Substituting the values of Eq.(55) into Eq.(50) and applying Eq.(17), the solution for Eq.(1) is obtained as follows
Case 2: When δ > 0.
By putting Eq.(50) into Eq.(18) and Eq.(20) and applying Eq.(8) and Eq.(12), the lefthand side of Eq.(18) and Eq.(20) transforms into a polynomial in ψ and ϕ. Collecting each coefficient of this polynomial to zero yields in a system of algebraic equations involving a0, a1, B1, ρ, δ, A1, and A2. Via package program, we obtain solutions as follows
Set 1:
Substituting the values of Eq.(57) into Eq.(50) and applying Eq.(17), the solution for Eq.(1) is obtained as follows:
Set 2:
Case 3: When δ = 0.
By putting Eq.(50) into Eq.(18) and Eq.(20) and applying Eq.(8) and Eq.(14), the lefthand side of equation Eq.(18) and Eq.(20) transforms into a polynomial in ψ and ϕ. Collecting each coefficient of this polynomial to zero yields in a system of algebraic equations involving a0, a1, B1, ρ, A1, and A2. By using package program, we obtain solutions as follows:
Set 1:
Set 2:
The stability of the obtained traveling wave solutions was analyzed using the Hamiltonian technique [36,37].
This section presents 3D, 2D, and contour graphs for various obtained solutions to clarify the characteristics of the retrieved solutions. Eq.(23) possesses a singular periodic solution and illustrated in Figure 1 for σ = −1,k = 1, γ1 = −1,A = 4,B = 1,C = 5,W(t) = sin(t). Eq.(24) possesses a dark soliton solution and illustrated in Figure 2, when σ = 1,k = −1, γ1 = −1,A = 4,B = 1,C = 4,W(t) = sin(t). Eq.(28) possesses a singular soliton solution and illustrated in Figure 3, when σ = −1,k = 1, γ1 = −1,W(t) = sin(t). A dark soliton solution for equation (56) with parameters k = 4, γ2 = −4,A2 = 1, v = 1, δ = −1, ρ = 3, W(t) = sin(t) is illustrated in Figure 4. Eq.(60) possesses a singular periodic solution and illustrated in Figure 5, when γ1 = −1, γ2 = −1, A1 = 1,A2 = 3, δ = 1,ρ = 1,W(t) = sin(t). Eq.(62) possesses a singular soliton solution, illustrated in Figure 6, when A1 = −1, A2 = 0, ρ = −10, a1 = 1, ω = 1, W(t) = sin(t). These investigations demonstrate that the evolution of soliton solutions over time in optical fibers is influenced by the effect of dispersion. By selecting specific integer values for the system parameters, one can control the emergence and behavior of these solutions, which retain their shape and velocity during propagation.

Graphical representations of |q(x, t)|2 in Eq.(23).

Graphical representations of |q(x, t)|2 in Eq.(24).

Graphical representations of |q(x, t)|2 in Eq. (28).

Graphical representations of |q(x, t)|2 in Eq. (56).

Graphical representations of |q(x, t)|2 in Eq. (60).

Graphical representations of |q(x, t)|2 in Eq. (62).
The
In this study, the
In this work, we investigated the SGNLSE incorporating the Kerr effect and higher-order nonlinearity by employing the