References
- Cohen A., Daubechies I., Feauveau J.C., Wavelets: A tutorial in theory and applications, SIAM Review, 36(3), 405–444, 1993.
- Daubechies I., Ten Lectures on Wavelets, SIAM, USA, 1992.
- Han D., Zha L., Wavelet methods for the solution of elliptic partial differential equations, Numerical Linear Algebra with Applications, 4(2), 149–166, 1997.
- Marchenko V.A., Khruslov E.Y., Homogenization of Partial Differential Equations (Progress in Mathematical Physics, 46) (2006th Ed.), ISBN:0817643516, ISBN:9780817643515, Birkhäuser, Basel, Switzerland, 2006.
- de Boor C., A Practical Guide to Splines, Springer, Germany, 1978.
- Schumaker L.L., Spline Functions: Basic Theory, Cambridge University Press, UK, 2007.
- Meyer Y., Wavelets: Algorithms and Applications, SIAM, USA, 1992.
- Selesnick I.W., The dual-tree complex wavelet transform, IEEE Transactions on Signal Processing, 49(5), 1238–1250, 2001.
- Mohammad M., Trounev A., An advanced algorithm for solving incompressible fluid dynamics: from Navier Stokes to Poisson equations, The European Physical Journal Special Topics, 234, 2191–2208, 2025.
- Chui C.K., An Introduction to Wavelets, Academic Press, USA, 1992.
- Meyer Y., Wavelets and Operators, Cambridge University Press, UK, 1996.
- Mohammad M., Trounev A., Computational precision in time fractional PDEs: Euler wavelets and novel numerical techniques, Partial Differential Equations in Applied Mathematics, 12(100918), 1–9, 2024.
- Mohammad M., Trounev A., Kumar S., High-precision Euler wavelet methods for fractional Navier-Stokes equations and two-dimensional fluid dynamics, Physics of Fluids, 36(12), 127143, 2024.
- Mohammad M., Trounev A., A new technique for solving neutral delay differential equations based on Euler wavelets, Complexity, 2022(753992), 1–8, 2022.