Have a personal or library account? Click to login
Odd and even symmetric prime constellations Cover

Figures & Tables

Fig. 1

Expanded Table 1.
Expanded Table 1.

Fig. 2

Divisibility relative to center prime - odd case - rel. index −1 divisible by 3.
Divisibility relative to center prime - odd case - rel. index −1 divisible by 3.

Fig. 3

Divisibility relative to center prime - odd case - rel. index 1 divisible by 3.
Divisibility relative to center prime - odd case - rel. index 1 divisible by 3.

Fig. 4

Divisibility relative to composite center - even base case.
Divisibility relative to composite center - even base case.

Fig. 5

Divisibility relative to composite center - even second case.
Divisibility relative to composite center - even second case.

Fig. 6

Proof of impossibility of suggestion for Table 20.
Proof of impossibility of suggestion for Table 20.

Fig. 7

Complete table for the first 10-tuple.
Complete table for the first 10-tuple.

Fig. 8

Table for a possible 16-tuple based on octuples.
Table for a possible 16-tuple based on octuples.

Potential triple prime, C(13, 3)_

Parametervalvalvalvalvalvalvalvalvalvalvalvalval

rel. index−6−5−4−3−2−10123456
constellationp1e1c1e2c2e3p2e4c3e5c4e6p3
divisors/primeP2C2C2P2C2C2P

The first few symmetric sixtuple constellations, third case, are given with C(29, 6)_

constellationp1p2p3p4p5p6

sixtuple prime 1151157163167173179
sixtuple prime 2201012010720113201172012320129
sixtuple prime 3128461128467128473128477128483128489
sixtuple prime 4297601297607297613297617297623297629
sixtuple prime 5350431350437350443350447350453350459
sixtuple prime 6354301354307354313354317354323354329
sixtuple prime 7531331531337531343531347531353531359

The three 10-tuples found with rel_ indices (−19, −17, −13, −11, −1, 1, 11, 13, 17, 19) when entries with indices (−7, 7) in the table in Figure 1 are composite_

10-tuple centerfactors of centerentry index −7entry index +7
39713433690(2, 3, 5, 7, 23, 8222243)compositecomposite
66419473050(2, (3, 2), (5, 2), (7, 2), 3012221)compositecomposite
71525244630(2, 3, 5, (7, 3), 6950947)compositecomposite

The four 10-tuples found when rel_ indices (−19, −17, −13, −11, −7, 7, 11, 13, 17, 19) are specified with (−1, 1) in the table in Figure 1 being composite_

10-tuple centerfactors of centerentry index −1entry index +1
30(2, 3, 5)compositecomposite
1864508550(2, 3, 5, 5, 241, 151577)compositecomposite
4763132670(2, 3, 5, 7193, 22073)compositecomposite
53028595502, 3, 5, 5, 167, 211691compositecomposite

First and last computed cases for constellation in Table 23_

Parametervaluevaluevaluevaluevaluevaluevaluevalue

first casep1p2p3p4p5p6p7p8
344231344237344243344251344253344259344263344267

last casep1p2p3p4p5p6p7p8
944554301944554307944554313944554321944554323944554329944554333944554337

The first 10-tuple C(39, 10) prime constellation, center c = 39713433690_

rel. index−19−17−13−11−1
primep1p2p3p4p5
value3971343367139713433673397134336773971343367939713433689
rel. index111131719
primep6p7p8p9p10
value3971343369139713433701397134337033971343370739713433709

Triple prime (47, 53, 59) with m = 13_

Parametervalvalvalvalvalvalvalvalvalvalvalvalval

constellation47484950515253545556575859
factors4724 * 3772 * 523 * 1722 * 13532 * 335 * 1123 * 73 * 192 * 2959

Summarizing the even symmetric constellations, smallest extent so far_

configurationsvalue of mnumber of casesm is minimal ?comment
2-tuples (double primes)3no limitYES obviousextensively studied
4-tuples (quadruple primes)9166 cases up to 107YES as shown in section 4.
6-tuples (sixtuple primes)1718 cases up to 107YES as shown in section 6The cases with m < 17 were shown to be not possible using divisibility by 2, 3, 5, 7.
8-tuples (octuple primes)2728 cases up to 1010Not verifiedThe cases with m = 27 have the smallest extent found so far
10-tuples352 cases up to 1010Not verifiedThe cases with m = 35 were the minimal extent found so far

Some 4-tuple symmetric primes, C(9, 4)_

constellationsp1p2p3p4q

quadruple prime, special case 15711139
quadruple prime 21113171915
quadruple prime 3101103107109105
quadruple prime 4191193197199195
quadruple prime 5821823827829825
quadruple prime 614811483148714891485
quadruple prime 718711873187718791875

9-tuple prime, C(120, 9)_

Parametervaluevaluevaluevalue

constellationp1p2p3p4
locationc − 60c − 42c − 30c − 18
divisors/prime12383210011123832100291238321004112383210053

centerp5
locationc
prime12383210071

constellationp6p7p8p9
locationc + 18c + 30c + 42c + 60
divisors/prime12383210089123832101011238321011312383210131

Divisibility of symmetric sixtuple prime constellations with C(27, 6), even base case_

Parametervalvalvalvalvalvalvalvalvalvalvalval

rel. index−13−12−11−10−9−8−7−6−5−4−3−2
constellationp1e1c1e2c2e3p2e4c3e5c4e6
divisibilityprime2, 3 2, 532prime2, 35232

rel. index−101
constellationp3e7p4
divisibilityprime2, 3, 5prime

rel. index2345678910111213
constellatione8c5e9c6e10p5e11c7e12c8e13p6
divisibility23252, 3prime232, 5 2, 3prime

Centers of the 5 10-tuple constellations C(47, 10)_

901011208680223369452041439536406486125010

Divisibility of symmetric octuple prime constellation - second case_

Parametervalvalvalvalvalvalvalvalvalvalvalval

rel. index−19−18−17−16−15−14−13−12−11−10−9−8
constellationp1e1c1e2c2e3p2e4c3e5c4e6
divisprime2, 3?23, 52prime2, 3?2, 532

rel. index−7−6−5−4−3−2
constellationp3e7c5e8c6e9
divisprime25232

rel. index−101
constellationp4e10p5
divisprime2, 3, 5prime

rel. index234567
constellatione11c7e12c8e13p6
divis23252, 3prime

rel. index891011121314151611819
constellatione14c9e15c10e16p7e17c11e18c12e19p8
divis232, 5?2, 3prime23, 52?2, 3prime

The first few symmetric eight-tuple constellations C(27, 8) with rel_ indices at (−13, −11, −7, −1, 1, 7, 11, 13)_

constellationp1p2p3p4p5p6p7p8

eight-tuple 11719232931374143
eight-tuple 212771279128312891291129713011303
eight-tuple 3113147113149113153113159113161113167113171113173
eight-tuple 425806472580649258065325806592580661258066725806712580673
eight-tuple 52073787720737879207378832073788920737891207378972073790120737903

Summarizing the odd symmetric constellations, smallest extent so far_

constellationsvalue of mnumber of casesis minimal ?comment
3-tuples (triple primes)13758163 up to 109YES by constructionm = 7, 11 not possible by symmetry, m = 5, 7 not possible by construction
5-tuples (qunintuple primes)37124 up to 107YES as shown in section 5The cases with m < 37 were shown to be not possible using Theorem 3
7-tuples (qunintuple primes)73124 up to 109NO
9-tuples121124 up to 2 * 1010NO121 is the smallest extent found so far

Case_1: possible symmetric quintuple prime_

Parametervalvalvalvalvalvalvalvalvalvalvalval

rel. index−18−1716−15−14−13−12−11−10−9−8−7
constellationp1e1c1e2c2e3c3e4c4e5c5e6
divisors/primeprime2 2 2 2 2 2

rel. index−6−5−4−3−2−1
constellationp2e7c6e8c7e9
divisors/primeprime2 2 2

rel. index0
centerp3
primeprime

rel. index123456
constellatione10c8e11c9e12p4
divisors/prime2 2 2prime

rel. index789101112131415161718
constellatione13c10e14c11e15c12e16c13e17c14e18p5
divisors/prime2 2 2 2 2 2prime

Divisibility of symmetric 4-tuple prime C(3, 9) by 2, 3 and 5_

Parametervaluevaluevaluevaluevaluevaluevaluevaluevalue

rel. index−4−3−2−101234
constellationp1e1p2e2ce3p3e4p4
divisors/primeP2, 3P23, 52P2, 3P

Divisibility of symmetric six-tuple prime constellations - C(17, 6)_ Center configuration is even second case p3, e4, c2, e5, p4_

Parametervaluevaluevaluevaluevaluevalue

rel. index−8−7−6−5−4−3
constellationp1e1c1e2p2e3
divisibility/primeprime2, 3, 7 2, 5prime2

centerp3e4c2e5p4
rel. index−2−1012
constellationprime2, 33, 5, 72prime

rel. index345678
constellatione6p5e7c3e8p6
divisibility/prime2prime2, 3, 7 2prime

Potential triple prime, C(9, 3)_

Parametervaluevaluevaluevaluevaluevaluevaluevaluevalue

rel. index−4−3−2−101234
constellationp1e1c1e2p2e3c2e4p3
divisors/primeP2C2P2C2P

The first few examples of computations according to Table 1_

The pair of double primes.p1p2p3p4

The next double primes. c6c7

sequence 1111317192931
sequence 2180411804318047180491805918061
sequence 3978419784397847978499785997861
sequence 4165701165703165707165709165719165721
sequence 5392261392263392267392269392279392281
sequence 6663581663583663587663589663599663601
sequence 7100234110023431002347100234910023591002361
sequence 8106870110687031068707106870910687191068721

The first few symmetric sixtuple constellations C(27, 6), even base case_

constellationp1p2p3p4p5p6

sixtuple prime 1587593599601607613
sixtuple prime 2194571946319469194711947719483
sixtuple prime 3101267101273101279101281101287101293
sixtuple prime 4179807179813179819179821179827179833
sixtuple prime 5193367193373193379193381193387193393

The first few symmetric sixtuple constellations with C(17, 6) are given here_

constellationp1p2p3p4p5p6

sixtuple prime 171113171923
sixtuple prime 297101103107109113
sixtuple prime 3160571606116063160671606916073
sixtuple prime 4194171942119423194271942919433
sixtuple prime 5437774378143783437874378943793
sixtuple prime 6109125710912611091263109126710912691091273

The first few symmetric seventuple constellations C(61, 7)_

constellationp1p2p3p4p5p6p7

seventuple 112003179120031851200319112003197120032091200322712003221
seventuple 214907619149076251490763114907637149076491490766714907661
seventuple 319755271197552771975528319755289197553011975531919755313

Centers of the last 3 10-tuple constellations C(47, 10)_

609673520404407582630

Divisibility of symmetric sixtuple prime constellations - with C(29, 6)_

Parametervalvalvalvalvalvalvalvalvalvalvalval

constellationp1e1c1e2c2e3p2e4c3e5c4e6
divisibilityprime23252, 3prime232 2, 3

constellationp3e7c5e8p4
divisibilityprime23, 52

constellatione9c6e10c7e11p5e12c8e13c9e14p6
divisibility2, 322, 532prime2, 35232prime

Case_2: possible symmetric quintuple primes_

Parametervalvalvalvalvalvalvalvalvalvalvalval

rel. index−18−1716−15−14−13−12−11−10−9−8−7
constellationp1e1c1e2c2e3p2e4c3e5c4e6
divisors/primeprime2 2 2prime2 2 2

rel. index−6−5−4−3−2−1
constellationc5e7c6e8c7e9
divisors/prime 2 2 2

rel. index0
centerp3
primeprime

rel. index123456
constellatione10c8e11c9e12c10
divisors/prime2 2 2

rel. index789101112131415161718
constellatione13c11e14c12e15p4e16c13e17c14e18p5
divisors/prime2 2 2prime2 2 2prime

Divisibility of symmetric octuple prime constellations_

Parametervalvalvalvalvalvalvalvalvalval

rel. index−19−18−17−16−15−14−13−12−11−10
constellationp1e1p2e2c1e3p3e4p4e5
divisprime2, 3prime23, 52, 7prime2, 3prime2, 5

rel. index−9−8−7−6−5−4−3−2−10
constellationc2e6c3e7c4e8c5e9c6e10
divis3272, 35232?2, 3, 5, 7

rel. index12345678910
constellationc7e11c8e12c9e13c10e14c11e15
divis?23252, 37232, 5

rel. index11121314151617181920
constellationp5e16p6e17c12e18p7e19p8e20
divisprime2, 3prime2, 73, 52prime2, 3prime2, 5

Some Case_2 C(37, 5) 5-tuple symmetric primes_

constellationp1p2p3p4p5

quintuple 11871318719187311874318749
quintuple 22560325609256212563325639
quintuple 32805128057280692808128087
quintuple 43103331039310513106331069
quintuple 59742397429974419745397459
quintuple 6103651103657103669103681103687

The two 10-tuples found up to 30 * 1010 with rel_ indices (−17, −13, −11, −1, 1, 11, 13, 17) when entries with indices (−19, 19) in the table in Figure 1 are composite_

10-tuple centerfactors of centerentry index −1entry index +1
30(2, 3, 5)primecomposite
113160(2(3), 3, 5, 23, 41)compositecomposite

Possible symmetric quintuple prime C(25, 5)_

Parametervalvalvalvalvalvalvalvalvalvalvalval

rel. index−12−11−10−9−8−7−6−5−4−3−2−1
constellationp1e1c1e2c2e3p2e4c3e5c4e6
divisors/primeprime2 2 2prime2 2 2

rel. index0
centerp3
primeprime

rel. index123456789101112
constellatione7c5e8c6e9p4e10c7e11c8e12p5
divisors/prime2 2 2prime2 2 2prime

With rhe rel_ indices (−30, −18, −12, 0, 12, 18, 30) for possible symmetric seven-tuple prime constellations_

Parametervalvalvalvalvalvalvalvalvalvalvalval

rel. index−30−29−28−27−26−25−24−23−22−21−2019
constellationp1e1c1e2c2e3c3e4c4e5c5e6

rel. index−18−17−16−15−14−13−12−11−10−9−87
constellationp2e7c6e8c7e9p3e10c8e11c9e12

rel. index−6−5−4−3−2−1012345
constellationc10e13c11e14c12e15p4e16c13e17c14e18

rel. index67891011121314151617
constellationc15e19c16e20c17e21p5e22c18e23c19e24

rel. index181920212223242526272829
constellationp6e25c20e26c21e27c22e28c23e29c24e30

rel. index30
constellationp7

Closest double prime to a constellation formed by a double prime pair_

sequencep1d1p2e1c1e2p3d2p4e3c2
divisors/primeprime2, 3prime23, 52prime2, 3prime2, 53
sequencee4c3e5c4e6c5e7c6e8c7e9
divisors/prime2 2, 35232 2, 3, 5 2

Divisibility of possible symmetric six-tuple prime constellation - C(15, 6)_ Even base case_

Parametervaluevaluevaluevaluevaluevalue

constellationp1e1p2e2c1e3
divisibility/primeprime2, 3prime2 2

centerp3e4p4
constellationprime2, 3prime

constellatione5c2e6p5e7p6
divisibility/prime2 2prime2prime

Divisibility of symmetric seventuple prime constellations C(61, 7)_

rel. index−30−29−28−27−26−25−24−23−22−21−2019
constellationp1e1c1e2c2e3c3e4c4e5c5e6
divisibilityprime2, 3 232 2, 3 232
rel. index−18−17−16−15−14−13−12−11−10−9−87
constellationp2e7c6e8c7e9p3e10c8e11c9e12
divisibilityprime2, 3 232prime2, 3 232
rel. index−6−5−4−3−2−1012345
constellationc10e13c11e14c12e15p4e16c13e17c14e18
divisibility 2, 3 232prime2, 3 232
rel. index67891011121314151617
constellationc15e19c16e20c17e21p5e22c18e23c19e24
divisibility 2, 3 232prime2, 3 232
rel. index181920212223242526272829
constellationp6e25c20e26c21e27c22e28c23e29c24e30
divisibilityprime2, 3 232 2, 3 232
rel. index30
constellationp7
divisibilityprime
Language: English
Page range: 267 - 292
Submitted on: Apr 29, 2024
Accepted on: Sep 5, 2024
Published on: Sep 20, 2024
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Jon Rokne, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.