Have a personal or library account? Click to login
On a generalization of the Cahn-Hilliard type equation with logarithmic nonlinearities in island formation Cover

On a generalization of the Cahn-Hilliard type equation with logarithmic nonlinearities in island formation

Open Access
|Jun 2024

References

  1. Cahn J.W., On spinodal decomposition, Acta Metallurgica, 9(9), 795–801, 1961.
  2. Cahn J.W., Hilliard J.E., Free energy of a nonuniform system I. Interfacial free energy, The Journal of Chemical Physics, 28(2), 258–267, 1958.
  3. Cherfils L., Miranville A., Zelik S., The Cahn–Hilliard equation with logarithmic potentials, Milan Journal of Mathematics, 79, 561–596, 2011.
  4. Elliott C.M., French D.A., Milner F.A., A second order splitting method for the Cahn–Hilliard equation, Numerische Mathematik, 54, 575–590, 1989.
  5. Novick-Cohen A., The Cahn–Hilliard equation: mathematical and modeling perspectives, Advances in Mathematical Sciences and Applications, 8(2), 965–985, 1998.
  6. Cohen D.S., Murray J.D., A generalized diffusion model for growth and dispersal in a population, Journal of Mathematical Biology, 12(2), 237–249, 1981.
  7. Klapper I., Dockery J., Role of cohesion in the material description of biofilms, Physical Review E, 74, 031902, 2006.
  8. Oron A., Davis S.H., Bankoff S.G., Long-scale evolution of thin liquid films, Reviews of Modern Physics, 69, 931–980, 1997.
  9. Thiele U., Knobloch E., Thin liquid films on a slightly inclined heated plate, Physica D: Nonlinear Phenomena, 190(3–4), 213–248, 2004.
  10. Chalupecký V., Numerical studies of Cahn–Hilliard equation and applications in image processing, Proceedings of Gzech-Japanese Seminar in Applied Mathematics, Czech Technical University, Prague, Czechia, 2004.
  11. Dolcetta I.C., Vita S.F., March R., Area-preserving curve-shortening flows: from phase separation to image processing, Interfaces and Free Boundaries, 4(4), 325–343, 2002.
  12. Tremaine S., On the origin of irregular structure in Saturn’s rings, The Astronomical Journal, 125, 894–901, 2003.
  13. Cherfils L., Miranville A., Zelik S., On a generalized Cahn–Hilliard equation with biological applications, Discrete and Continuous Dynamical Systems-B, 19(7), 2013–2026, 2014.
  14. Khain E., Sander L.M., Generalized Cahn–Hilliard equation for biological applications, Physical Review E, 77, 051129, 2008.
  15. Fakih H., A Cahn–Hilliard equation with a proliferation term for biological and chemical applications, Asymptotic Analysis, 94(1–2), 71–104, 2015.
  16. Miranville A., Existence of solutions to a Cahn-Hilliard type equation with a logarithmic nonlinear term, Mediterranean Journal of Mathematics, 16, 6, 2019.
  17. Oono Y., Puri S., Computationally efficient modeling of ordering of quenched phases, Physical Review Letters, 58, 836–839, 1987.
  18. Miranville A., Asymptotic behavior of the Cahn–Hilliard-Oono equation, Journal of Applied Analysis and Computation, 1(4), 523–536, 2011.
  19. Miranville A., Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation term, Applicable Analysis, 92(6), 1308–1321, 2013.
  20. Fakih H., Asymptotic behavior of a generalized Cahn–Hilliard equation with a mass source, Applicable Analysis, 96(2), 324–348, 2017.
  21. Miranville A., The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2(3), 479–544, 2017.
  22. Fakih H., Mghames R., Nasreddine N., On the Cahn–Hilliard equation with mass source for biological applications, Communications on Pure and Applied Analysis, 20(2), 495–510, 2021.
  23. Bertozzi A., Esedoğlu S., Gillette A., Analysis of a two-scale Cahn-Hilliard model for binary image inpainting, Multi-scale Modeling and Simulations, 6(3), 913–936, 2007.
  24. Cherfils L., Fakih H., Miranville A., Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting, Inverse Problems and Imaging, 9(1), 105–125, 2015.
  25. Cherfils L., Fakih H., Miranville A., A Cahn–Hilliard system with a fidelity term for color image inpainting, Journal of Mathematical Imaging and Vision, 54, 117–131, 2016.
  26. Cherfils L., Fakih H., Miranville A., A complex version of the Cahn-Hilliard equation for grayscale image inpainting, Multiscale Modeling and Simulations, 15(1), 575–605, 2017.
  27. Awad Y., Fakih H., Alkhezi Y., Numerical linear algebra for the two-dimensional Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting, Mathematics, 11(24), 4952, 2023.
  28. Cherfils L., Fakih H., Miranville A., On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms, SIAM Journal of Imaging Sciences, 8(2), 1123–1140, 2015.
Language: English
Page range: 83 - 102
Submitted on: Nov 12, 2023
Accepted on: Jan 20, 2024
Published on: Jun 2, 2024
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Hussein Fakih, Marwa Badreddine, Hawraa Alsayed, Yahia Awad, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.