In this part, we observe the existence and blow up properties of the results founded by using projected scheme.
3.1Existence and blow up solutions
In this section, our objective is to establish estimates for uN that are independent of N. These estimates can be rigorously justified based on the approximated problems. A crucial aspect involves obtaining a uniform (with respect to N) estimate for fN (ςN) in L2(Ω × (0, T)), where T > 0 is independent of N. This is essential for passing to the limit in the nonlinear term and obtaining a solution to the singular initial problem. Notably, achieving this goal necessitates a uniform (with respect to N) strict separation property for 〈ςN〉 from the singular points −1 and 1. It is worth mentioning that such a strict separation property is straightforward for the original Cahn-Hilliard equation, given the conservation of the spatial average of the order parameter, provided that the same property holds for the initial datum.
We assume that ς0 ∈ H1(Ω) ∩ L∞(Ω), with |ς0(x)| < 1 almost everywhere in Ω, and
(24)
|\langle {\varsigma _0}\rangle | \le 1 - 2\delta ,{\kern 1pt} {\kern 1pt} \delta \in (0,\frac{1}{2}],
given. If we first integrate (21) over Ω, we find due to (22),
(25)
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle \eta ({\varsigma _N})\rangle = 0.
In fact, we have that
\frac{{d{\varsigma _N}}}{{dt}} + {\Delta ^2}{\varsigma _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0.
Noting that
\int_\Omega {\Delta ^2}\varsigma {\kern 1pt} dx = - \int_\Omega \nabla \Delta \varsigma .\nabla 1dx + \int_\Gamma \frac{{\partial \Delta \varsigma }}{{\partial \nu }}.\varsigma {\kern 1pt} ds = 0.
Furthermore,
\int_\Omega \Delta {f_N}({\varsigma _N}){\kern 1pt} dx = - \int_\Omega \nabla {f_N}({\varsigma _N}).\nabla 1dx + \int_\Gamma \frac{{\partial {f_N}({\varsigma _N})}}{{\partial \nu }}1{\kern 1pt} ds = 0,
hence
\frac{d}{{dt}}\int_\Omega {\varsigma _N}dx + \int_\Omega \eta ({\varsigma _N})dx = 0,
which yields
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle \eta ({\varsigma _N})\rangle = 0.
On the other hand, setting ςN = 〈ςN〉 + ζN, (ζN) = 0 yields
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle \varsigma _N^2 - p(1 - {\varsigma _N})\rangle = 0
and
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle {\left( {\langle {\varsigma _N}\rangle + {\zeta _N}} \right)^2} - p\left( {1 - {\varsigma _N}} \right)\rangle = 0.
Therefore,
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle {\langle {\varsigma _N}\rangle ^2} + 2\langle {\varsigma _N}\rangle \langle {\zeta _N}\rangle + \zeta _N^2 - p\left( {1 - {\varsigma _N}} \right)\rangle = 0,
so that
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + {\langle {\varsigma _N}\rangle ^2} + 2\langle {\varsigma _N}\rangle \langle {\zeta _N}\rangle + \langle \zeta _N^2\rangle - p\left( {1 - \langle {\varsigma _N}\rangle } \right) = 0,
it then follows
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + {\langle {\varsigma _N}\rangle ^2} - p\left( {1 - \langle {\varsigma _N}\rangle } \right) = - \langle \zeta _N^2\rangle .
Hence, we get
(26)
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \eta \langle {\varsigma _N}\rangle = - \langle \zeta _N^2\rangle .
Furthermore, ζN is a solution to:
(27)
{\partial _t}{\zeta _N} + {\Delta ^2}{\zeta _N} - \Delta {f_N}({\varsigma _N}) + \overline {\eta ({\varsigma _N})} = 0,
(28)
{\partial _\nu }{\zeta _N} = {\partial _\nu }\Delta {\zeta _N} = 0,\;{\rm{on}}\;\Gamma ,
(29)
{\zeta _N}{|_{t = 0}} = {\zeta _0}(x),\;{\rm{in}}\;\Omega .
Since (21) gives,
\begin{array}{*{20}{r}}{\frac{{\partial \left( {{\zeta _N} + \langle {\varsigma _N}\rangle } \right)}}{{\partial t}} + {\Delta ^2}{\varsigma _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0}\\{\frac{{\partial {\zeta _N}}}{{\partial t}} + \frac{{\partial \langle {\varsigma _N}\rangle }}{{\partial t}} + {\Delta ^2}{\varsigma _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0}\\{\frac{{\partial {\zeta _N}}}{{\partial t}} - \langle g({\varsigma _N})\rangle + {\Delta ^2}{\zeta _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0}\\{\frac{{\partial {\zeta _N}}}{{\partial t}} + {\Delta ^2}{\zeta _N} - \Delta {f_N}({\varsigma _N}) + \overline {\eta ({\varsigma _N})} = 0.}\end{array}
\frac{{\partial {\varsigma _N}}}{{\partial \nu }} = \frac{{\partial {\zeta _N}}}{{\partial \nu }}{\kern 1pt} \;{\kern 1pt} {\rm{and}}\;{\kern 1pt} {\kern 1pt} \frac{{\partial \Delta {\varsigma _n}}}{{\partial \nu }} = \frac{{\partial \Delta {\zeta _n}}}{{\partial \nu }}.
These equations can be written equivalently, if we multiply by −(Δ)−1, as:
(30)
{( - \Delta )^{ - 1}}{\partial _t}{\zeta _N} - \Delta {\zeta _N} + \overline {{f_N}({\varsigma _N})} + {( - \Delta )^{ - 1}}\overline {\eta ({\varsigma _N})} = 0,\;{\rm{in}}\;\Omega \times (0,T),
(31)
{\partial _\nu }{\zeta _N} = 0,\;{\rm{on}}\;\Gamma ,
(32)
{\zeta _N}{|_{t = 0}} = {\zeta _0},\;{\rm{in}}\;\Omega .
Multiplying (30) by ζN and integrating over Ω and by parts, we have:
(33)
\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + \parallel \nabla {\zeta _N}{\parallel ^2} + [\overline {{f_N}({\varsigma _N})} ,{\zeta _N}] + [\eta ({\varsigma _N}),{( - {\Delta ^{ - 1}})^{ - 1}}{\zeta _N}] = 0.
Since
\begin{array}{*{20}{l}}{\int_\Omega {{( - \Delta )}^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}}{\zeta _N}{\kern 1pt} dx}&{ = \frac{1}{2}\frac{d}{{dt}}\int_\Omega {{( - \Delta )}^{ - 1}}\zeta _N^2{\kern 1pt} dx}\\{}&{ = \frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2}\end{array}
and
\begin{array}{*{20}{l}}{\int_\Omega - \Delta {\zeta _N}{\kern 1pt} {\zeta _N}{\kern 1pt} dx}&{ = \int_\Omega \nabla {\zeta _N} \cdot \nabla {\zeta _N}{\kern 1pt} dx - \int_\Gamma \frac{{\partial {\zeta _N}}}{{\partial \nu }}{\zeta _N}{\kern 1pt} ds}\\{}&{ = \;||\nabla {\zeta _N}|{|^2}.}\end{array}
Note that
[\overline {{f_N}({\varsigma _N})} ,{\zeta _N}] = [{f_N}({\varsigma _N}) - {f_N}(\langle {\varsigma _N}\rangle ),{\zeta _N}]
and taking s = ζN, m = 〈ςN〉 in (17), we get
(34)
[\overline {{f_N}({\varsigma _N})} ,{\zeta _N}] \ge {c_4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx - c.
Indeed, from (17), we have
\begin{array}{*{20}{l}}{\left( {{f_N}(s + m) - {f_N}(m)} \right)s \ge {c_4}\left( {{s^4} + {m^2}{s^2}} \right) - {c_5}}\\{\left( {{f_N}({\varsigma _N}) - {f_N}\langle {\varsigma _N}\rangle } \right){\zeta _N} \ge {c_4}\left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right) - {c_5},}\end{array}
so
\begin{array}{*{20}{l}}{[{f_N}({\varsigma _N}) - {f_N}\langle {\varsigma _N}\rangle ,{\zeta _N}]}&{ = \int_\Omega \left( {{f_N}({\varsigma _N}) - {f_N}\langle {\varsigma _N}\rangle } \right){\zeta _N}{\kern 1pt} dx}\\{}&{ \ge {c_4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx - {c_5}.}\end{array}
Furthermore,
\begin{array}{*{20}{l}}{|[\overline {\eta ({\varsigma _N})} ,( - {\Delta ^{ - 1}}){\zeta _N}]|}&{ = \;|[\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle ),( - {\Delta ^{ - 1}}){\zeta _N}]]|}\\{}&{ \le c||{\zeta _N}||{\kern 1pt} ||\eta ({\varsigma _N}) - g(\langle {\varsigma _N}\rangle )||,}\end{array}
by Cauchy Schwartz and using ||ζN||−1 ≤ c||ζN|| which results after reapplying Lemma (1) with s = ζN and m = 〈ςN〉 and Young’s inequality:
(35)
\begin{array}{*{20}{l}}{|[\overline {\eta ({\varsigma _N})} ,( - {\Delta ^{ - 1}}){\zeta _N}]|}&{ \le \frac{{{c_4}}}{4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + c||{\zeta _N}|{|^2}}\\{}&{ \le \frac{{{c_4}}}{4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + c.}\end{array}
Indeed, we have that
\begin{array}{*{20}{l}}{|[\overline {\eta ({\varsigma _N})} ,( - {\Delta ^{ - 1}}){\zeta _N}]|}&{ \le c||{\zeta _N}||{\kern 1pt} ||\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle )||}\\{}&{ \le c\left( {\frac{{||{\zeta _N}|{|^2}}}{2} + \frac{{||\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle )|{|^2}}}{2}} \right)}\\{}&{ \le \frac{c}{2}\left( {||{\zeta _N}|{|^2} + {c_9}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2 + \zeta _N^2} \right){\kern 1pt} dx + {c_{10}}} \right)}\\{}&{ \le \frac{{{c_4}}}{2}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + c||{\zeta _N}|{|^2} + {c^\prime}}\\{}&{ \le \frac{{{c_4}}}{2}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + c.}\end{array}
It follows from (33)–(35), that
(36)
\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + c\left( {||{\zeta _N}||_{{H^1}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right) \le {c^\prime},{\kern 1pt} {\kern 1pt} c > 0.
Since
\begin{array}{*{20}{l}}{\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + ||\nabla {\zeta _N}|{|^2}}&{ = - [\overline {{f_N}({\varsigma _N})} ,{\zeta _N}] - [\overline {\eta ({\varsigma _N})} , - {\Delta ^{ - 1}}{\zeta _N}]}\\{}&{ \le - {c_4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + c + \frac{{{c_4}}}{2}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + c.}\end{array}
Next, multiplying (30) by −ΔζN and integrating over Ω, we obtain
(37)
\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}|{|^2} + ||\Delta {\zeta _N}|{|^2} + [\overline {{f_N}({\varsigma _N})} , - \Delta {\zeta _N}] + [\overline {\eta ({\varsigma _N})} ,{\zeta _N}] = 0.
In fact, we have
\begin{array}{*{20}{l}}{\int_\Omega - {\Delta ^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}}{\kern 1pt} ( - \Delta {\zeta _N}){\kern 1pt} dx}&{ = \int_\Omega \frac{{\partial {\zeta _N}}}{{\partial t}}{\kern 1pt} {\zeta _N}{\kern 1pt} dx}\\{}&{ = \frac{1}{2}\frac{d}{{dt}}\int_\Omega \zeta _N^2{\kern 1pt} dx}\\{}&{ = \frac{1}{2}\frac{d}{{dt}}||{\zeta _N}|{|^2}.}\end{array}
Furthermore, owing to (14)
(38)
\begin{array}{*{20}{l}}{[\overline {{f_N}({\varsigma _N})} , - \Delta {\zeta _N}]}&{ = [{f_N}({\varsigma _N}), - \Delta {\zeta _N}]}\\{}&{ = - \int_\Omega {f_N}({\varsigma _N}){\kern 1pt} \Delta {\zeta _N}{\kern 1pt} dx}\\{}&{ = \int_\Omega \nabla {f_N}({\varsigma _N}).\nabla {\zeta _N}{\kern 1pt} dx}\\{}&{ = \int_\Omega {f^\prime}({\varsigma _N})\nabla {\varsigma _N}\nabla {\zeta _N}{\kern 1pt} dx}\\{}&{ = [{f^\prime}({\varsigma _N})\nabla {\varsigma _N},\nabla {\zeta _N}]}\\{}&{ \ge - {\lambda _1}||\nabla {\zeta _N}|{|^2}}\end{array}
and owing once more to Lemma (1), we have
(39)
\begin{array}{*{20}{l}}{|[\overline {\eta ({\varsigma _N})} ,{\zeta _N}]|}&{ = \;|[\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle ),{\zeta _N}]|}\\{}&{ \le \frac{1}{2}||\Delta {\zeta _N}|{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + {c^\prime}.}\end{array}
Indeed,
\begin{array}{*{20}{l}}{|[\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle ),{\zeta _N}]|}&{ \le \;||\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle )||{\kern 1pt} ||{\zeta _N}||}&{}&{}\\{}&{ \le \frac{{||{\zeta _N}|{|^2}}}{2} + \frac{{||\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle )|{|^2}}}{2}}&{}&{}\\{}&{ \le \frac{1}{2}||\Delta {\zeta _N}|{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + {c^\prime}.}&{}&{}\end{array}
From (37)–(39) it follows that
(40)
\frac{d}{{dt}}||{\zeta _N}|{|^2} + ||\Delta {\zeta _N}|{|^2} \le c\left( {||{\zeta _N}||_{{H^1}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) + {c^\prime}.
By (37), we have
\begin{array}{*{20}{l}}{\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}|{|^2} + ||\Delta {\zeta _N}|{|^2}}&{ = \;[\overline {{f_N}({\varsigma _N})} , - \Delta {\zeta _N}] - [\overline {\eta ({\varsigma _N})} ,{\zeta _N}]}&{}&{}\\{}&{ \le {\lambda _1}||\nabla {\zeta _N}|{|^2} + \frac{1}{2}||\Delta {\zeta _N}|{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + {c^\prime},}&{}&{}\end{array}
so,
\frac{d}{{dt}}||{\zeta _N}|{|^2} + ||\Delta {\zeta _N}|{|^2} \le c\left( {||\nabla {\zeta _N}|{|^2} + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) + {c^\prime}.
Finally, summing (36) and γ1 times (40), where γ1 > 0 is small enough and independent of N, we find
(41)
\frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) \le {c^\prime},\;\;\;c > 0.
Indeed, we have (36)+γ1(40) gives
\frac{d}{{dt}}\left( {||{\zeta _N}|{|^2} + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c||{\zeta _N}|{|_{{H^1}(\Omega )}} + {\gamma _1}||\Delta {\zeta _N}|{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx \le {c^\prime},
then
\frac{d}{{dt}}\left( {||{\zeta _N}|{|^2} + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}|{|_{{H^2}(\Omega )}} + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) \le {c^\prime}.
We now come back to (25)–(26). Noting that g(s) ≥ ps − p, we have
\begin{array}{*{20}{c}}{\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \eta (\langle {\varsigma _N}\rangle ) = - \langle \zeta _N^2\rangle \le 0}\\{\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} \le - \eta (\langle {\varsigma _N}\rangle ) \le - p\langle {\varsigma _N}\rangle + p}\\{\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + p\langle {\varsigma _N}\rangle \le p.}\end{array}
Consider the ODE:
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + p\langle {\varsigma _N}\rangle = p,
then
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} = - p\left( {\langle {\varsigma _N}\rangle - 1} \right),
hence
\frac{{d\langle {\varsigma _N}\rangle }}{{\left( {\langle {\varsigma _N}\rangle - 1} \right)}} = - p{\kern 1pt} dt,
we infer
\ln |\langle {\varsigma _N}\rangle - 1| = - p{\kern 1pt} t + k,
so
\langle {\varsigma _N}\rangle = c{e^{ - p{\kern 1pt} t}} + 1,
but at t = 0, 〈ςN〉 = 〈ς0〉, hence c = 〈ς0〉 − 1.
Finally,
(42)
\langle {\varsigma _N}(t)\rangle \le \left( {\langle {\varsigma _0}\rangle - 1} \right){e^{ - p{\kern 1pt} t}} + 1,
as long as it exists. In particular,
(43)
\langle {\varsigma _N}(t)\rangle < 1.
Note that it follows from (41) that:
\frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) \le {c^\prime},{\kern 1pt} {\kern 1pt} c > 0.
Indeed, we have that
\begin{array}{*{20}{l}}{c\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right)}&{ \ge c||{\zeta _N}||_{{H^(}\Omega )}^2 - \frac{1}{2}||\Delta {\zeta _N}|{|^2} - {c^\prime}}&{}&{}&{}&{}&{}\\{}&{ \ge c||\Delta {\zeta _N}|{|^2} - {c^\prime}}&{}&{}&{}&{}&{}\\{}&{ \ge c||{\zeta _N}|{|^2} - {c^\prime}}&{}&{}&{}&{}&{}\\{}&{ \ge \frac{c}{2}||{\zeta _N}|{|^2} + \frac{c}{2}||{\zeta _N}|{|^2} - {c^\prime}}&{}&{}&{}&{}&{}\\{}&{ \ge c\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) - {c^\prime},}&{}&{}&{}&{}&{}\end{array}
but by (41)
\begin{array}{*{20}{c}}{\frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right)}\\{ \le \frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) + {c^\prime}}\\{ \le 2{c^\prime}.}\end{array}
Which yields
(44)
||{\zeta _N}(t)|{|^2} \le c{e^{ - {c^\prime}t}}||{\zeta _0}|{|^2} + {c^\prime},{\kern 1pt} {\kern 1pt} {c^{''}} > 0.
In fact,
\frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) \le {c^\prime},{\kern 1pt} {\kern 1pt} c > 0,
then by Gronwall lemma
\begin{array}{*{20}{c}}{||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2} \le \left( {||{\zeta _0}||_{ - 1}^2 + {\gamma _1}||{\zeta _0}|{|^2}} \right) + {c^{''}}}\\{{\gamma _1}||{\zeta _N}|{|^2} \le {e^{ - ct}}\left( {||{\zeta _0}||_{ - 1}^2 + {\gamma _1}||{\zeta _0}|{|^2}} \right) + {c^{''}}}\\{||{\zeta _N}|{|^2} \le \frac{1}{{{\gamma _1}}}{e^{ - ct}}\left( {||{\zeta _0}||_{ - 1}^2 + {\gamma _1}||{\zeta _0}|{|^2}} \right) + \frac{{{c^{''}}}}{{{\gamma _1}}},}\end{array}
but
||{\zeta _0}||_{ - 1}^2 \le q||{\zeta _0}|{|^2}
, then
\begin{array}{*{20}{l}}{||{\zeta _N}|{|^2}}&{ \le \frac{1}{{{\gamma _1}}}{e^{ - ct}}\left( {q||{\zeta _0}|{|^2} + {\gamma _1}||{\zeta _0}|{|^2}} \right) + \frac{{{c^{''}}}}{{{\gamma _1}}}}&{}&{}\\{}&{ \le c{e^{ - {c^\prime}t}}||{\zeta _0}|{|^2} + {c^{''}}.}&{}&{}\end{array}
As long as it exists, in particular
\langle \zeta _N^2\rangle = k||\zeta _N^2(t)|| \le c||{\zeta _0}|{|^2} + {c^\prime},{\kern 1pt} \;{\rm{since}}\;{\kern 1pt} {e^{ - {c^\prime}t}} \le 1,
and ζ0 = ς0 − 〈ς0〉 and |〈ς0〉| ≤ 1 − 2δ, so
(45)
\langle \zeta _N^2(t)\rangle \le c({\varsigma _0},\delta ),
as long as it exists.
Let y± be the solution of the Ricatti ODE’s
(46)
y_ + ^\prime + \eta ({y_ + }) = 0,{\kern 1pt} {\kern 1pt} {y_ + }(0) = \langle {\varsigma _0}\rangle
(47)
y_ - ^\prime + \eta ({y_ - }) = - c({\varsigma _0},\delta ),{\kern 1pt} {\kern 1pt} {y_ - }(0) = \langle {\varsigma _0}\rangle ,
where c(ς0, δ) is the constant in (45). Then it follows from the comparison principle that, as long as this makes sense
(48)
{y_ - }(t) \le \langle {\varsigma _N}(t)\rangle \le {y_ + }(t).
Indeed, we have that
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + g(\langle {\varsigma _N}\rangle ) = - \langle \zeta _N^2\rangle \le 0,
so, 〈ςN (t)〉 ≤ y+(t), also
\langle \zeta _N^2\rangle \le c({\varsigma _0},\delta ),
hence
\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \eta (\langle {\varsigma _N}\rangle ) \ge - c({\varsigma _0},\delta ),
so 〈ςN (t)) ≥ y−(t).
In particular, it follows that (at least) a local in times solution exists on some [0, T ], where T > 0 is independent of N. Note also that
{y_ + }(t) = \frac{{{y_2} - c{y_1}{e^{\frac{t}{{{c_0}}}}}}}{{1 - c{e^{\frac{t}{{{c_0}}}}}}},
with
\begin{array}{*{20}{c}}{{y_1} = \frac{{p + \sqrt {{p^2} + 4p} }}{2},}\\{{y_2} = \frac{{p - \sqrt {{p^2} + 4p} }}{2}}\end{array}
and
c = \frac{{{y_2} - \langle {\varsigma _0}\rangle }}{{{y_1} - \langle {\varsigma _0}\rangle }}.
y+(t) is the solution of the ODE: y′ + η(y) = 0, so y′ + y2 − p(1 − y) = 0, so
\begin{array}{*{20}{c}}{\frac{{dy}}{{dt}}}&{ = p + py - {y^2}}&{}&{}\\{\int \frac{{dy}}{{p + py - {y^2}}}}&{ = \int dt.}&{}&{}\end{array}
We have
\begin{array}{*{20}{c}}{p + py - {y^2} = 0:}\\{\Delta = {p^2} - 4(p)( - 1) = {p^2} + 4p,}\end{array}
hence the roots of the quadratic equation are
\begin{array}{*{20}{c}}{{y_1} = \frac{{ - p - \sqrt {{p^2} + 4p} }}{{ - 2}} = {y_1} = \frac{{p + \sqrt {{p^2} + 4p} }}{2},}\\{{y_2} = \frac{{ - p + \sqrt {{p^2} + 4p} }}{{ - 2}} = {y_2} = \frac{{p - \sqrt {{p^2} + 4p} }}{2},}\end{array}
so
\begin{array}{*{20}{c}}{\int \frac{{ - dy}}{{(y - {y_1})(y - {y_2})}} = t + c,}\\{\frac{1}{{(y - {y_1})(y - {y_2})}} = \frac{A}{{y - {y_1}}} + \frac{B}{{y - {y_2}}}.}\end{array}
Where
\begin{array}{*{20}{c}}{A = \mathop {\lim }\limits_{y \to {y_1}} \frac{1}{{y - {y_2}}} = \frac{1}{{{y_1} - {y_2}}} = \frac{1}{{\sqrt {{p^2} + 4p} }} = {c_0},}\\{B = \mathop {\lim }\limits_{y \to {y_2}} \frac{1}{{y - {y_1}}} = \frac{1}{{{y_2} - {y_1}}} = \frac{{ - 1}}{{\sqrt {{p^2} + 4p} }} = - {c_0}.}\end{array}
We infer
\begin{array}{*{20}{c}}{\int \left( {\frac{{ - {c_0}}}{{y - {y_1}}} + \frac{{{c_0}}}{{y - {y_2}}}} \right)dt = t + c,}\\{{c_0}\left( {\ln |y - {y_2}| - \ln |y - {y_1}|} \right) = t + \ln c,}\\{{c_0}\ln |\frac{{y - {y_2}}}{{y - {y_1}}}| = t + \ln c,}\\{\ln |\frac{{y - {y_2}}}{{y - {y_1}}}{|^{{c_0}}} = t + \ln c,}\\{{{\left( {\frac{{y - {y_2}}}{{y - {y_1}}}} \right)}^{{c_0}}} = c{e^t},}\\{\frac{{y - {y_2}}}{{y - {y_1}}} = c{e^{\frac{t}{{{c_0}}}}},}\\{y - {y_2} = c{e^{\frac{t}{{{c_0}}}}}(y - {y_1}),}\\{y\left( {1 - c{e^{\frac{t}{{{c_0}}}}}} \right) = {y_2} - c{y_1}{e^{\frac{t}{{{c_0}}}}},}\\{y = \frac{{{y_2} - c{y_1}{e^{\frac{t}{{{c_0}}}}}}}{{1 - c{e^{\frac{t}{{{c_0}}}}}}}.}\end{array}
But y|t=0 = 〈ς0〉, so
\begin{array}{*{20}{c}}{\langle {\varsigma _0}\rangle = \frac{{{y_2} - c{y_1}}}{{1 - c}},}\\{{y_2} - c{y_1} = \langle {\varsigma _0}\rangle \left( {1 - c} \right),}\\{{y_2} - \langle {\varsigma _0}\rangle = c\left( {{y_1} - \langle {\varsigma _0}\rangle } \right),}\\{c = \frac{{{y_2} - \langle {\varsigma _0}\rangle }}{{{y_1} - \langle {\varsigma _0}\rangle }}.}\end{array}
We assume from now on that t ∈ [0, T ], where T is as above, we again multiply (30) by ζN and we have
\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + ||\nabla {\zeta _N}|{|^2} + \;[{f_N}({\varsigma _N}),{\zeta _N}] \le c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime},
since by (33)
(49)
\begin{array}{*{20}{c}}{\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + ||\nabla {\zeta _N}|{|^2} + [\overline {{f_N}({\varsigma _N})} ,{\zeta _N}]}&{ = - [\overline {\eta ({\varsigma _N})} , - {\Delta ^{ - 1}}{\zeta _N}]}&{}&{}\\{}&{ \le c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime}.}&{}&{}\end{array}
Which yields, employing (18) with s = ζN and m = 〈ςN〉,
(50)
\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + {c_\delta }\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right) \le {c^\prime}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + c_\delta ^{''},{\kern 1pt} {\kern 1pt} {c_{\delta > 0}}.
In fact, we know from (18) that
\begin{array}{*{20}{l}}{{f_N}({\varsigma _N}){\zeta _N}}&{ \ge {c_\delta }\left( {{F_N}({\varsigma _N}) + |{f_{1,N}}({\varsigma _N})|} \right) - c_\delta ^\prime}&{}&{}&{}\\{\int_\Omega {f_N}({\varsigma _N}){\zeta _N}dx}&{ \ge {c_\delta }\left( {\int_\Omega {F_N}({\varsigma _N})dx + \int_\Omega |{f_{1,N}}({\varsigma _N})|dx} \right) - c_\delta ^\prime,}&{}&{}&{}\end{array}
\begin{array}{*{20}{c}}{\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + {c_\delta }\left( {||{f_{1,1}}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right) - c_\delta ^\prime}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime},}\end{array}
but f1(ςN) = fN (ςN) + λςN. We then infer that
\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + {c_\delta }\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right) \le {c^\prime}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + c_\delta ^{''},{\kern 1pt} {\kern 1pt} {c_{\delta > 0}}.
Summing (41) and γ2× (50), where γ2 > 0 is small enough and independent of N and δ, we obtain a differential inequality of the form
(51)
\begin{array}{*{20}{c}}{\frac{{d{E_{1,N}}}}{{dt}} + {c_\delta }\left( {{E_{1,N}} + ||{\zeta _N}||_{{H^2}(\Omega )}^2} \right) + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}}\\{ + \int_\Omega {F_N}({\varsigma _N})dx \le c_\delta ^\prime,{\kern 1pt} {\kern 1pt} {c_\delta } > 0,}\end{array}
where
{E_{1,N}} = (1 + {\gamma _2})||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}
.
In fact, (41)+γ2(50) give
\begin{array}{*{20}{c}}{\frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right)}\\{ + {\gamma _2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + {\gamma _2}{c_\delta }\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right)}\\{ \le {c^\prime} + {\gamma _2}{c^\prime}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {\gamma _2}c_\delta ^{''},{\kern 1pt} {\kern 1pt} {c_\delta } > 0.}\end{array}
Hence,
\begin{array}{*{20}{c}}{\frac{{d{E_{1,N}}}}{{dt}} + {c_\delta }\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right)}\\{ \le c_\delta ^\prime,\;\;\;\;\;\;\;{c_\delta } > 0,}\end{array}
but
\begin{array}{*{20}{l}}{{E_{1,N}}}&{ = (1 + {\gamma _2})||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}}&{}&{}\\{}&{ \le (1 + {\gamma _2})k||{\zeta _N}||_{{H^2}(\Omega )}^2 + {\gamma _1}{k^\prime}||{\zeta _N}||_{{H^2}(\Omega )}^2,}&{}&{}\end{array}
so,
{E_{1,N}} \le k||{\zeta _N}||_{{H^2}(\Omega )}^2,
then
\begin{array}{*{20}{c}}{\frac{{d{E_{1,N}}}}{{dt}} + {c_\delta }\left( {{E_{1,N}} + ||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right) + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}}\\{ + \int_\Omega {F_N}({\varsigma _N})dx \le c_\delta ^\prime,{\kern 1pt} {\kern 1pt} {c_\delta } > 0.}\end{array}
If we note that |〈ςN〉 ≤ 1, we see that
\frac{{d{{\langle {\varsigma _N}\rangle }^2}}}{{dt}} = 2\langle {\varsigma _N}\rangle \left( { - \langle \zeta _N^2\rangle - {{\langle {\varsigma _N}\rangle }^2} + p(1 - \langle {\varsigma _N}\rangle )} \right) \le c||{\zeta _N}|{|^2},
which results in the following
(52)
\frac{{d{{\langle {\varsigma _N}\rangle }^2}}}{{dt}} + {\langle {\varsigma _N}\rangle ^2} \le c||{\zeta _N}|{|^2} + {c^\prime},
since
\begin{array}{*{20}{l}}{\frac{{d{{\langle {\varsigma _N}\rangle }^2}}}{{dt}}}&{ = 2\langle {\varsigma _N}\rangle \frac{d}{{dt}}\langle {\varsigma _N}\rangle }&{}&{}\\{}&{ = 2\langle {\varsigma _N}\rangle \left( { - g(\langle {\varsigma _N}\rangle ) - \langle \zeta _N^2\rangle } \right)}&{}&{}\\{}&{ = 2\langle {\varsigma _N}\rangle \left( { - {{\langle {\varsigma _N}\rangle }^2} + p(1 - \langle {\varsigma _N}\rangle ) - \langle \zeta _N^2\rangle } \right)}&{}&{}\\{}&{ = - 2{{\langle {\varsigma _N}\rangle }^3} + 2p\langle {\varsigma _N}\rangle - 2p{{\langle {\varsigma _N}\rangle }^2} - 2\langle {\varsigma _N}\rangle {{\langle {\zeta _N}\rangle }^2}}&{}&{}\\{}&{ \le c||{\zeta _N}|{|^2} + {c^\prime},}&{}&{}\end{array}
so
\begin{array}{*{20}{l}}{\frac{{d{{\langle {\varsigma _N}\rangle }^2}}}{{dt}} + {{\langle {\varsigma _N}\rangle }^2}}&{ \le c||{\zeta _N}|{|^2} + {c^\prime} + 1}&{}&{}\\{}&{ \le c||{\zeta _N}|{|^2} + {c^{''}}.}&{}&{}\end{array}
Summing (51) and γ3 × (52), where γ3 > 0 (independent of N) is small enough, we get
(53)
\begin{array}{*{20}{c}}{\frac{{d{E_{2,N}}}}{{dt}} + {c_\delta }\left( {{E_{2,N}} + ||{\varsigma _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right) + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}}\\{ + \int_\Omega {F_N}({\varsigma _N})dx \le c_\delta ^\prime,{\kern 1pt} {\kern 1pt} {c_\delta } > 0,}\end{array}
where
{E_{2,N}} = {E_{1,N}} + {\gamma _3}{\langle {\varsigma _N}\rangle ^2},
since (51) +γ3 (52) give
\begin{array}{*{20}{c}}{\frac{d}{{dt}}{E_{1,N}} + {c_\delta }\left( {{E_{1,N}} + ||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right)}\\{ + {\gamma _3}\frac{d}{{dt}}{{\langle {\varsigma _N}\rangle }^2} + {\gamma ^3}{{\langle {\varsigma _N}\rangle }^2}}\\{ \le c_\delta ^\prime + c{\gamma _3}||{\zeta _N}|{|^2} + {\gamma _3}{c^\prime},}\end{array}
but
||{\zeta _N}|{|^2} = \int_\Omega \zeta _N^2dx \le c\int_\Omega \zeta _N^4dx,
so we get (53).
E2,N satisfies
c||{\varsigma _N}|{|^2} \le {E_{2,N}} \le {c^\prime}||{\varsigma _N}|{|^2},{\kern 1pt} {\kern 1pt} c,{c^\prime} > 0.
Indeed, we have
\begin{array}{*{20}{l}}{{E_{2,N}}}&{ = {E_{1,N}} + {\gamma _3}{{\langle {\varsigma _N}\rangle }^2}}&{}&{}\\{}&{ = (1 + {\gamma _2})||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2} + {\gamma _3}{{\langle {\varsigma _N}\rangle }^2},}&{}&{}\end{array}
but ||ζN||−1 ∼ ||ζN||L2(Ω), since 〈ζN〉 = 0, so ∃c1, c2 > 0, such that
\begin{array}{*{20}{c}}{{c_1}||{\zeta _N}||_{{L^2}(\Omega )}^2 \le ||{\zeta _N}||_{ - 1}^2 \le {c_2}||{\zeta _N}||_{{L^2}(\Omega )}^2.}\\{{\gamma _3}{{\langle {\varsigma _N}\rangle }^2} + (1 + {\gamma _2}){c_1}||{\zeta _N}||_{{L^2}(\Omega )}^2 + {\gamma _1}||{\zeta _N}|{|^2} \le {E_{2,N}}}\\{ \le (1 + {\gamma _2}){c_2}||{\zeta _N}||_{{L^2}(\Omega )}^2 + {\gamma _1}||{\zeta _N}|{|^2} + {\gamma _3}{{\langle {\varsigma _N}\rangle }^2}}\\{{c_3}\left( {||{\zeta _N}||_{{L^2}(\Omega )}^2 + {{\langle {\varsigma _N}\rangle }^2}} \right) \le {E_{2,N}} \le {c_4}\left( {||{\zeta _N}||_{{L^2}(\Omega )}^2 + {{\langle {\varsigma _N}\rangle }^2}} \right),}\end{array}
then
c||{\varsigma _N}|{|^2} \le {E_{2,N}} \le {c^\prime}||{\varsigma _N}|{|^2}.
In the next step, we multiply (30) by
\frac{{d{\varsigma _N}}}{{dt}}
, then integrate over Ω and have
(54)
||\frac{{d{\zeta _N}}}{{dt}}||_{ - 1}^2 + \frac{1}{2}\frac{d}{{dt}}||\nabla {\varsigma _N}|{|^2} + [{f_N}({\varsigma _N}),\frac{{d{\varsigma _N}}}{{dt}}] + [\varsigma _N^2 - p(1 - {\varsigma _N}),{( - \Delta )^{ - 1}}\frac{{d{\varsigma _N}}}{{dt}}] = 0.
Indeed, (30) results in
{( - \Delta )^{ - 1}}\frac{{d{\varsigma _N}}}{{dt}} - \Delta {\zeta _N} + \overline {{f_N}({\varsigma _N})} + {( - \Delta )^{ - 1}}\overline {\eta ({\varsigma _N})} = 0,
but
\begin{array}{*{20}{c}}{\int_\Omega - \Delta {\zeta _N}\frac{{d{\zeta _N}}}{{dt}}dx = }\\{ = \frac{1}{2}\frac{d}{{dt}}\left( {\int_\Omega \nabla {\zeta _N} \cdot \nabla {\zeta _N}{\kern 1pt} dx - \int_\Gamma {\zeta _N}\frac{{\partial {\zeta _N}}}{{\partial \nu }}ds} \right)}\\{ = \frac{1}{2}\frac{d}{{dt}}||\nabla {\zeta _N}|{|^2}.}\end{array}
Furthermore
(55)
\begin{array}{*{20}{l}}{[{f_N}({\varsigma _N}),\frac{{\partial {\zeta _N}}}{{\partial t}}]}&{ = [{f_N}({\varsigma _N}),\frac{{\partial {\varsigma _N}}}{{\partial t}}] - [{f_N}({\varsigma _N}),\frac{{\partial \langle {\varsigma _N}\rangle }}{{\partial t}}]}\\{}&{ = \frac{d}{{dt}}\int_\Omega {F_N}({\varsigma _N})dx + [{f_N}({\varsigma _N}),{{\langle {\zeta _N}\rangle }^2} + {{\langle {\varsigma _N}\rangle }^2} - p(1 - \langle {\varsigma _N}\rangle )]}\\{}&{ = \frac{d}{{dt}}\int_\Omega {F_N}({\varsigma _N})dx + {\kern 1pt} {\rm{Vol}}{\kern 1pt} (\Omega )\langle {f_N}({\varsigma _N})\rangle [{{\langle {\zeta _N}\rangle }^2} + {{\langle {\varsigma _N}\rangle }^2} - p(1 - \langle {\varsigma _N}\rangle )]}\\{}&{ \le \;||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}\left( {||{\zeta _N}||_{{L^2}(\Omega )}^2 + 1} \right).}\end{array}
We also note that
(56)
\begin{array}{*{20}{l}}{|[\varsigma _N^2 - p(1 - {\varsigma _N}),{{( - \Delta )}^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}}]|}&{ = [\varsigma _N^2 - \langle \varsigma _N^2\rangle + p({\varsigma _N} - \langle {\varsigma _N}\rangle ),{{( - \Delta )}^{ - 1}}\frac{{\partial {\zeta _N}}}{{dt}}]}&{}&{}\\{}&{ \le \frac{1}{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime}.}&{}&{}\end{array}
It follows from (54)–(56) that
(57)
\begin{array}{*{20}{c}}{\frac{d}{{dt}}\left( {||\nabla {\zeta _N}|{|^2} + 2\int_\Omega {F_N}({\varsigma _N})dx} \right) + ||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2}\\{ \le c\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}\left( {||{\zeta _N}|{|^2} + 1} \right) + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right).}\end{array}
By (54)
\begin{array}{*{20}{c}}{||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + \frac{1}{2}\frac{d}{{dt}}||\nabla {\zeta _N}|{|^2} = - [{f_N}({\varsigma _N}),\frac{{\partial {\zeta _N}}}{{\partial t}}] - [\varsigma _N^2 - p(1 - {\varsigma _N}),{{( - \Delta )}^{ - 1}}\frac{{\partial {\varsigma _N}}}{{\partial t}}]}\\{ \le - \frac{d}{{dt}}\int_\Omega {F_N}({\varsigma _N})dx + c||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}\left( {||{\zeta _N}|{|^2} + 1} \right) + \frac{1}{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx,}\end{array}
then
\begin{array}{*{20}{c}}{\frac{1}{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + \frac{1}{2}\frac{d}{{dt}}||\nabla {\zeta _N}|{|^2} + \frac{d}{{dt}}\int_\Omega {F_N}({\varsigma _N})dx}\\{ \le c\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}\left( {||{\zeta _N}|{|^2} + 1} \right) + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right),}\end{array}
and next we multiply by 2 and get (57). It follows from (53) that ςN is bounded in L∞(0, T ; L2(Ω))∩L2(0, T ; H2(Ω)), and
\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx
is bounded in L1(0, T) which implies that ςN is bounded in L4((0, T) × Ω) and fN (ςN) is bounded in L1((0, T) × Ω) independently of N. It therefore follows from (57) that ςN is also bounded in L∞(0, T ; H1(Ω)) and
\frac{{\partial {\varsigma _N}}}{{\partial t}}
is bounded in L2(0, T ; H−1(Ω)) independently of N (note that FN is bounded on [−1, 1], independently of N).
We finally multiply (30) by
\overline {{f_N}({\varsigma _N})}
and integrate over Ω and have
||\overline {{f_N}({\varsigma _N})} |{|^2} - [\Delta {\zeta _N},\overline {{f_N}({\varsigma _N})} ] + [{( - \Delta )^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}},\overline {{f_N}({\varsigma _N})} ] + [{( - \Delta )^{ - 1}}\overline {\eta ({\varsigma _N})} ,\overline {{f_N}({\varsigma _N})} ] = 0,
noting that
\begin{array}{*{20}{l}}{[\Delta {\zeta _N},\overline {{f_N}({\varsigma _N})} ]}&{ = [\Delta {\zeta _N},{f_N}({\varsigma _N})]}&{}&{}\\{}&{ = - [f_N^\prime({\varsigma _N})\nabla {\varsigma _N},\nabla {\varsigma _N}]}&{}&{}\\{}&{ \le {\lambda _1}||\nabla {\varsigma _N}|{|^2}.}&{}&{}\end{array}
Indeed, we have that
\begin{array}{*{20}{l}}{[\Delta {\zeta _N},\overline {{f_N}({\varsigma _N})} ]}&{ = [\Delta {\zeta _N},{f_N}({\varsigma _N}) - \langle {f_N}({\varsigma _N})\rangle ]}&{}&{}\\{}&{ = [\Delta {\zeta _N},{f_N}({\varsigma _N})]}&{}&{}\\{}&{ = \int_\Omega \Delta {\varsigma _N}{f_N}({\varsigma _N}){\kern 1pt} dx}&{}&{}\\{}&{ = - \int_\Omega \nabla {\varsigma _N} \cdot \nabla {f_N}({\varsigma _N})dx}&{}&{}\\{}&{ = - \int_\Omega \nabla {\varsigma _N} \cdot \nabla ({\varsigma _N})f_N^\prime({\varsigma _N})dx}&{}&{}\\{}&{ \le {\lambda _1}||\nabla {\varsigma _N}|{|^2}.}&{}&{}\end{array}
Proceeding as above, we get the inequality
(58)
||\overline {{f_N}({\varsigma _N})} |{|^2} \le c\left( {||{\varsigma _N}||_{{H^1}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + ||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2} \right).
Indeed, we have that
\begin{array}{*{20}{l}}{|[ - {\Delta ^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}},\overline {{f_N}({\varsigma _N})} ]|}&{ \le || - {\Delta ^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}}||{\kern 1pt} ||\overline {{f_N}({\varsigma _N})} ||}&{}&{}\\{}&{ \le \frac{\varepsilon }{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2} - |[ - {\Delta ^{ - 1}}\overline {\eta ({\varsigma _N})} ,\overline {{f_N}({\varsigma _N})} ]|}&{}&{}\\{}&{ \le \parallel - {\Delta ^{ - 1}}\overline {\eta ({\varsigma _N})} \parallel {\kern 1pt} ||\overline {{f_N}({\varsigma _N})} ||}&{}&{}\\{}&{ \le \frac{\varepsilon }{2}|| - {\Delta ^{ - 1}}\overline {\eta ({\varsigma _N})} |{|^2} + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2}}&{}&{}\\{}&{ \le c||\overline {\eta ({\varsigma _N})} |{|^2} + ||\overline {{f_N}({\varsigma _N})} |{|^2}}&{}&{}\\{}&{ \le c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime} + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2}.}&{}&{}\end{array}
Therefore
\begin{array}{*{20}{c}}{||\overline {{f_N}({\varsigma _N})} |{|^2} = [\Delta {\zeta _N},\overline {{f_N}({\varsigma _N})} ] - [{{( - \Delta )}^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}},\overline {{f_N}({\varsigma _N})} ]}\\{ \le {\lambda _1}||\nabla {\varsigma _N}|{|^2} + \frac{\varepsilon }{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime} + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2},}\end{array}
and we get (58).
This results in a uniform (with respect to N) estimate for
\overline {{f_N}({\varsigma _N})}
in L2((0, T) × Ω). From (18) it follows that
(59)
|\langle {f_N}({\varsigma _N})\rangle | \le {c_\delta }\parallel {\zeta _N}\parallel {\kern 1pt} ||\overline {{f_N}({\varsigma _N})} || + c_\delta ^\prime,
we find a uniform (with respect to N) estimate for fN (ςN) in L2((0, T) × Ω).
Besides, owing to (18) with 〈ςN〉 = m and ζN = s,
\begin{array}{*{20}{c}}{{f_N}({\varsigma _N}) - {\varsigma _N} \ge {c_6}\left( {{F_N}({\varsigma _N}) + |{f_{1,N}}({\varsigma _N})|} \right) - {c_7}}\\{|{f_{1,N}}({\varsigma _N})| \le \frac{1}{{{c_6}}}{f_N}({\varsigma _N}){\kern 1pt} {\zeta _N} - {F_N}({\varsigma _N}) + \frac{{{c_7}}}{{{c_6}}}}\end{array}
\begin{array}{*{20}{l}}{|\langle {f_{1,N}}({\varsigma _N})\rangle |}&{ \le \langle |{f_{1,N}}({\varsigma _N})|\rangle }&{}&{}\\{}&{ \le \frac{1}{{{c_6}}}\frac{1}{{{\kern 1pt} {\rm{Vol}}{\kern 1pt} (\Omega )}}\int_\Omega {f_N}({\varsigma _N}){\zeta _N}dx - \frac{1}{{{\kern 1pt} {\rm{Vol}}{\kern 1pt} (\Omega )}}\int_\Omega {F_N}({\varsigma _N})dx + \frac{{{c_7}}}{{{c_6}}},}&{}&{}\end{array}
but FN (ςN) ≤ c f (ςN)ςN + | f1,N (ςN)| and fN (ςN) = f1,N (ςN) − λ1ςN.
\begin{array}{*{20}{l}}{|\langle {f_N}({\varsigma _N})\rangle |}&{ \le \;|\langle {f_{1,N}}({\varsigma _N})\rangle | + {\lambda _1}|\langle {\varsigma _N}\rangle |}&{}&{}\\{}&{ \le \;|\langle {f_{1,N}}({\varsigma _N})\rangle | + c||{\varsigma _N}|{|_{{L^2}(\Omega )}}}&{}&{}\\{}&{ \le c||{\varsigma _N}|{|_{{L^2}(\Omega )}} + ||\overline {{f_N}({\varsigma _N})} ||.}&{}&{}\end{array}