Have a personal or library account? Click to login
By:
Open Access
|Jan 2024

References

  1. Keng H.L., Introduction to Number Theory, Springer-Verlag Berlin Heidelberg, Germany, 1982.
  2. Andrews G.E., Number Theory, W.B. Saunders Co., Dover Publication Inc., New York, USA, 1971.
  3. Halberstam H., Richert H.E., Sieve Methods, Dover Publications, USA, 2011.
  4. Caragiu M., Sequential Experiments with Primes, Springer, USA, 2017.
  5. Stepney S., Euclid's proof that there are an infinite number of primes, https://www-users.cs.york.ac.uk/susan/cyc/p/primeprf.htm, Accessed: September 3, 2022.
  6. Uselton S.C., A study of semiprime arithmetic sequences, Honors Theses, 67, https://repository.belmont.edu/cgi/viewcontent.cgi?article=1081&context=honors_theses, Accessed: September 7, 2022.
  7. Faber X., Granville A., Prime factors of dynamic sequences, Journal Für Die Reine und Angewandte Mathematik, 661, 189–214, 2011.
  8. Numbers Aplenty, Semiprimes, https://www.numbersaplenty.com/set/semiprime/, Accessed: September 9, 2022.
  9. Borne K., Abdenim O.H., 20 Best prime numbers books of all time, https://bookauthority.org/books/best-prime-numbers-books.
  10. Niven I., Zuckerman H.S., Montgomery H.L., An Introduction to the Theory of Numbers, John Wiley & Sons, USA, 1991.
  11. Crandall R., Pomerance C., Prime Numbers A Computational Perspective (2nd Ed.), Springer, USA, 2005.
  12. Zhang Y., Bounded gaps between primes, Annals of Mathematics, 179(3), 1121–1174, 2014.
  13. Pietro G.D., Numerical analysis approach to twin primes conjecture, Notes on Number Theory and Discrete Mathematics, 27(3), 175–183, 2021.
  14. Villegas F.R., Experimental Number Theory, Oxford University Press, UK, 2007.
  15. Hamiss K., A simple algorithm for prime factorization and primality testing, Journal of Mathematics, 2022(ID:7034529), 1–10, 2022.
  16. Hang P., Sun Z., Wang S., A pattern of prime numbers and its application in primality testing, Journal of Physics: Conference Series, 2381, 2022 6th International Conference on Mechanics, Mathematics and Applied Physics (ICMMAP 2022), 19–21 August 2022, Qingdao, China.
  17. Riesel H., Prime Numbers and Computer Methods for Factorization (2nd Ed.), Boston, MA: Birkhäuser, Switzerland, 2012.
  18. Goudsmit S.A., Unusual prime number sequences, Nature, 214, 1164, 1967.
  19. Engelsma T.J., k-tuple permissible patterns, http://www.pi-e.de/ktuplets.htm, Accessed: September 12, 2023.
  20. Ericksen L., Primality Testing and Prime Constellations, Siauliai Mathematical Seminar, 3(11), 61–77, 2008.
  21. McEvoy M., Experimental mathematics, computers and the a priori, Synthese, 190, 397–412, 2013.
  22. Experimental mathematics, https://en.wikipedia.org/wiki/Experimental_mathematics, Accessed: October 5, 2022.
  23. Weisstein E., Twin primes, https://mathworld.wolfram.com/TwinPrimes.html, Accessed: September 12, 2023.
  24. Goldston D.A., Pintz J., Yildirim C.Y., Primes in tuples I, Annals of Mathematics, 170(2), 819–862, 2009.
  25. Goldston D.A., Pintz J., Yildirim C.Y., Primes in tuples II, Acta Mathematica, 204(1), 1–47, 2010.
  26. Rokne J., Some observations on prime pairs, quadruples and octuples, IEEE Canadian Review, 92, 8–11, 2023.
  27. Sato N., Number Theory, https://artofproblemsolving.com/articles/files/SatoNT.pdf, Accessed: September 10, 2023.
Language: English
Page range: 251 - 262
Submitted on: Oct 13, 2023
Accepted on: Dec 25, 2023
Published on: Jan 10, 2024
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Jon Rokne, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.