Have a personal or library account? Click to login

Approximation by nonlinear Meyer-König and Zeller operators based on q-integers

Open Access
|Jan 2024

References

  1. Gupta V., Rassias M.T., Moments of Linear Positive Operators and Approximation, Springer, 2019.
  2. Gal S.G., Shape-Preserving Approximation by Real and Complex Polynomials, Birkhäuser, Boston, 2008.
  3. Lupaş A., A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, 9, 85–92, 1987.
  4. Phillips G.M., Bernstein polynomials based on the q-integers, Annals of Numerical Mathematics, 4(1–4), 511–518, 1997.
  5. Phillips G.M., A generalization of the Bernstein polynomials based on the q-integers, The Anziam Journal, 42(1), 79–86, 2000.
  6. Oruç H., Tuncer N., On the convergence and iterates of q-Bernstein polynomials, Journal of Approximation Theory, 117(2), 301–313, 2002.
  7. Ostrovska S., q-Bernstein polynomials and their iterates, Journal of Approximation Theory, 123(2), 232–255, 2003.
  8. Derriennic M.M., Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rendiconti del Circolo Matematico di Palermo, 2(76), 269–290, 2005.
  9. Finta Z., Gupta V., Approximation by q-Durrmeyer operators, Journal of Applied Mathematics and Computing, 29, 401–415, 2009.
  10. Khan K., Lobiyal D.K., Bèzier curves based on Lupaş (p,q)-analogue of Bernstein functions in CAGD, Journal of Computational and Applied Mathematics, 317, 458–477, 2017.
  11. Khan K., Lobiyal D.K., Kilicman A., Bèzier curves and surfaces based on modified Bernstein polynomials, Azerbaijan Journal of Mathematics, 9(1), 3–21, 2019.
  12. Farouki R.T., The Bernstein polynomial basis: A centennial retrospective, Computer Aided Geometric Design, 29(6), 379–419, 2012.
  13. Bede B., Coroianu L., Gal S.G., Approximation and shape preserving properties of the Bernstein operator of max-product kind, International Journal of Mathematics and Mathematical Sciences, 2009(ID:590589), 26 pages, 2009.
  14. Acar E., Karahan D., Kırcı Serenbay S., Approximation for the Bernstein operator of max-product kind in symmetric range, Khayyam Journal of Mathematics, 6(2), 257–273, 2020.
  15. Özalp Güller Ö., Acar E., Kırcı Serenbay S., Nonlinear bivariate Bernstein-Chlodowsky operators of maximum product type, Journal of Mathematics, 2022(ID:4742433), 11 pages, 2022.
  16. Özalp Güller Ö., Acar E., Kırcı Serenbay S., Some new theorems on the approximation of maximum product type of multivariate nonlinear Bernstein-Chlodowsky operators, Advances in Operator Theory, 7(27), 1–15, 2022.
  17. Bede B., Coroianu L., Gal S.G., Approximation and shape preserving properties of the nonlinear Meyer-König and Zeller operator of max-product kind, Numerical Functional Analysis and Optimization, 31(3), 232–253, 2010.
  18. Bede B., Gal S.G., Approximation by nonlinear Bernstein and Favard-Szász-Mirakjan operators of max-product kind, Journal of Concrete and Applicable Mathematics, 8(2), 193–207, 2010.
  19. Bede B., Nobuhara H., Fodor J., Hirota K., Max-product shepard approximation operators, Journal of Advanced Computational Intelligence and Intelligent Informatics, 10, 494–497, 2006.
  20. Bede B., Coroianu L., Gal S.G., Approximation and shape preserving properties of the nonlinear Bleimann-Butzer-Hahn operators of max-product kind, Commentationes Mathematicae Universitatis Carolinae, 51(3), 397–415, 2010.
  21. Holhoş A., Weighted approximation of functions by Meyer-König and Zeller operators of max-product type, Numerical Functional Analysis and Optimization, 39(6), 689–703, 2018.
  22. Güngör Ş.Y., İspir N., Approximation by Bernstein-Chlodowsky operators of max-product kind, Mathematical Communications, 23, 205–225, 2018.
  23. Rao N., Wafi A., (p,q)-Bivariate-Bernstein-Chlodowsky operators, Filomat, 32(2), 369–378, 2018.
  24. Raiz M., Rao N., Mishra V.N., Szasz-Type Operators Involving q-Appell Polynomials, Approximation Theory, Sequence Spaces and Applications Industrial and Applied Mathematics, Springer, Singapore, 2022.
  25. Mishra L.N., Pandey S., Mishra V.N., King type generalization of Baskakov operators based on (p,q) calculus with better approximation properties, Analysis, 40(4), 163–173, 2020.
  26. Gairola A.R., Singh A., Rathour L., Mishra V.N., Improved rate of approximation by modification of Baskakov operator, Operators and Matrices, 16(4), 1097–1123, 2022.
  27. Mishra V.N., Raiz M., Rao N., Dunkl analouge of Szász Schurer Beta bivariate operators, Mathematical Foundations of Computing, 6(4), 651–669, 2023.
  28. Rao N., Heshamuddin M., Shadab M., Srivastava A., Approximation properties of bivariate Szasz Durrmeyer operators via Dunkl analogue, Filomat, 35(13), 4515–4532, 2021.
  29. Mishra V.N., Khatri K., Mishra L.N., Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications, 586, 1–11, 2013.
  30. Mishra L.N., Pandey S., Mishra V.N., On a class of generalised (p,q) Bernstein operators, Indian Journal of Industrial and Applied Mathematics, 10(1), 220–233, 2019.
  31. Mishra V.N., Pandey S., On (p,q) Baskakov-Durrmeyer-Stancu operators, Advances in Applied Clifford Algebras, 27(2), 1633–1646, 2017.
  32. Khatri K., Mishra V.N., Generalized Szasz-Mirakyan operators involving Brenke type polynomials, Applied Mathematics and Computation, 324, 228–238, 2018.
Language: English
Page range: 211 - 222
Submitted on: Jun 13, 2023
Accepted on: Oct 26, 2023
Published on: Jan 10, 2024
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Ecem Acar, Özge Özalp Güller, Sevilay Kırcı Serenbay, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.