1Introduction
The qualification of approximation for linear positive operators has a significant impact on the approximation theory. Many researchers have studied in this field [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, Bernstein operators and its generalizations have a significant status in Computer-Aided Geometric Design (CAGD) to introduce surfaces and curves and have been investigated in many papers [10, 11, 12]. Some application areas include the numerical solutions of partial differential equations, CAGD, 3D modeling.
In recent years, many articles have centered on the subject of approximating continuous functions with q-Calculus [3, 4, 5, 6, 7, 8, 9]. Initially, Lupas [3] and Philips [4] introduced the q-Bernstein operators generalization and examined approximation qualifications of these operators. Then, Derriennic introduced many qualifications of the q-Durrmeyer operators in [8].
In [13], using discrete linear approximation operators to approximate the nonlinear positive operators were introduced. The operators of max-product type were first used to describe linear operators that used maximum as the name of the sum and provided a Jackson-type error estimate with regard to the continuity modulus [14, 15, 16, 17, 18, 19, 20, 21, 22]. Since the max-product kind of approximation theory is a very rich and useful phenomena of approximating continuous functions, researchers have turned to this new field in recent years. For another approximation theory studies including univariate and bivariate type of operators can be seen via [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].
In [2], the nonlinear Meyer-König and Zeller operators of max-product type were first described from the linear counterpart by using the maximum operator in place of the sum operator, as below
Z_n^{(M)}\left(f \right)(v) = {{\vee _{i = 0}^\infty {s_{n,i}}(v)f\left({{i \over {n + i}}} \right)} \over {\vee _{i = 0}^\infty {s_{n,i}}(v)}},
where
{s_{n,i}}(v) = \left({\matrix{{n + i} \cr i \cr}} \right){\left(v \right)^i}
and
\mathop \vee \nolimits_{i = 0}^\infty {s_{n,i}}(v) = \mathop {\sup}\nolimits_{i \in {\rm{\mathbb N}}} \left\{{{s_{n,i}}(v)} \right\}
.
In [17], Bede et al. proved that
Z_n^{(M)}
operators are a well defined nonlinear operator for all x ∈ [0,1] and
Z_n^{(M)}
operators have approximation conclusions and shape preserving properties. According to the usual Meyer-König and Zeller operators, the max-product kind of these operators also preserve approximation properties over the class of continuous functions. Additionally,
Z_n^{(M)}
operators are continuous for any f > 0 and preserve the quasi-convexity of f on [0,1] and the monocity in [17].
3Construction of the operators
In this section, we define nonlinear q-Meyer-König and Zeller operators of max-product type as below:
(2)
Z_n^{(M)}\left(f \right)(\varsigma ;q) = {{\mathop \vee \limits_{\zeta = 0}^\infty {t_{n,\zeta}}(\varsigma,q)f\left({{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \right)} \over {\mathop \vee \limits_{\zeta = 0}^\infty {t_{n,\zeta}}(\varsigma,q)}},\;\varsigma \in [0,1),
which
{t_{n,\zeta}}(\varsigma,q) = {\left[ {\matrix{{n + \zeta} \cr \zeta \cr}} \right]_q}{\left(\varsigma \right)^\zeta}
. Here, the function f : [0,1] → ℝ+ is continuous.
The operators given in (2) are positive and continuous on the interval [0,1] for a continuous function f : [0,1] → ℝ+. Indeed, f ∈ C+([0,1]) and tn,ζ(ς,q) is positive for all [0,1], we have our operator being positive. For the nonlinearity of
Z_n^{(M)}\left(f \right)(\varsigma ;q)
for any f, h ∈ C+([0,1]), we obtain
Z_n^{(M)}\left({f + h} \right)(\varsigma ;q) \le Z_n^{(M)}\left(f \right)(\varsigma ;q) + Z_n^{(M)}\left(h \right)(\varsigma ;q)
. Also, the pseudo-linearity property is provided by these operators, and these operators are positive homogenous. Also, we handily show that
Z_n^{(M)}\left({f;q} \right)(0) - f\left(0 \right) = Z_n^{(M)}\left({f;q} \right)(1) - f\left(1 \right) = 0
for any n consider that in the indications, proofs and expressions of all approximation conclusions in fact we may assume that 0 < ς < 1. Additionally, we provide an error estimate for the operators
Z_n^{(M)}\left(f \right)(\varsigma ;q)
described by (2) with regard to the modulus of continuity.
For each ζ,γ ∈ {0,1,2,} and
x \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
, we obtained in the following structure
(3)
\matrix{{{P_{\zeta,n,\gamma}}(\varsigma,q) = {{{t_{n,\zeta}}(\varsigma,q)\left| {{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \right|} \over {{t_{n,\gamma}}(\varsigma,q)}},} \cr {{p_{\zeta,n,\gamma}}(\varsigma,q) = {{{t_{n,\zeta}}(\varsigma,q)} \over {{t_{n,\gamma}}(\varsigma,q)}}.} \cr}
It follows that if ζ ≥ j + 1, then
(4)
{P_{\zeta,n,\gamma}}(\varsigma,q) = {{{t_{n,\zeta}}(\varsigma,q)\left({{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \right)} \over {{t_{n,\gamma}}(\varsigma,q)}},
and if ζ ≤ γ, then
(5)
{P_{\zeta,n,\gamma}}(\varsigma,q) = {{{t_{n,\zeta}}(\varsigma,q)\left({\varsigma - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \right)} \over {{t_{n,\gamma}}(\varsigma)}}.
Lemma 3
For all ζ, γ ∈ {0,1,2,⋯} and
\varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
we obtain
{p_{\zeta ,n,\gamma }}\left( {\varsigma ,q} \right) \le 1.
Proof
We have two cases for the proof of the above lemma: 1) ζ ≥ γ, 2) ζ≤ γ. Case 1: Let ζ ≥ γ . From the definition pζ,n,γ (ς, q) given (3), since the function
\left[{1 \over \varsigma}
is nonincreasing on
\left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
and [γ + 1]q ≤ [ζ + 1]q, we obtain
{{{p_{\zeta,n,\gamma}}(\varsigma)} \over {{p_{\zeta + 1,n,\gamma}}(\varsigma)}} = {{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} \cdot {1 \over \varsigma} \ge {{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} \cdot {{{{[n + \gamma + 1]}_q}} \over {{{[\gamma + 1]}_q}}} = {{1 - {q^{n + \gamma + 1}}} \over {1 - {q^{n + \zeta + 1}}}} \ge 1.
which indicates
{p_{\gamma,n,\gamma}}(\varsigma,q) \ge {p_{\gamma + 1,n,\gamma}}(\varsigma,q) \ge {p_{\gamma + 2,n,\gamma}}(\varsigma,q) \ge \cdots.
Case 2: Let ζ ≤ γ.
{{{p_{\zeta,n,\gamma}}(\varsigma)} \over {{p_{\zeta - 1,n,\gamma}}(\varsigma)}} = {{{{[n + \zeta ]}_q}} \over {{{[\zeta ]}_q}}} \cdot \varsigma \ge {{{{[n + \zeta ]}_q}} \over {{{[\zeta ]}_q}}} \cdot {{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}} \ge 1.
which implies
{p_{\gamma,n,\gamma}}(\varsigma,q) \ge {p_{\gamma - 1,n,\gamma}}(\varsigma,q) \ge {p_{\gamma - 2,n,\gamma}}(\varsigma,q) \ge \cdots \ge {p_{0,n,\gamma}}(\varsigma,q).
Since pγ,n,γ (ς,q) = 1, the proof of lemma is finished.
Lemma 4
Let q ∈ (0,1), γ ∈ {1,2,⋯} and
\varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
.
(i) If ζ ∈ {γ + 1,⋯} is such that
{[\gamma ]_q} \le {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{{q^\gamma}{{[\gamma + 1]}_q} + {{[\gamma ]}_q}{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}}
, then Pζ,n,γ (ς,q) ≥ Pζ+1,n,γ (ς, q).
(ii) If ζ ∈ {0,1⋯,γ} is such that
{[\gamma ]_q} \le {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}
, then Pζ,n,γ (ς) ≥ Pζ−1,n,γ (ς).
Proof
(i) Let ζ∈ {γ + 1,γ + 2,⋯} with
{[\gamma ]_q} \le {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{{q^\gamma}{{[\gamma + 1]}_q} + {{[\gamma ]}_q}{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}}
. So, we obtain
{{{P_{\zeta,n,\gamma}}(\varsigma,q)} \over {{P_{\zeta + 1,n,\gamma}}(\varsigma,q)}} = {{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} \cdot {1 \over \varsigma} \cdot {{{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \over {{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} - x}}.
Since the function
h(\varsigma) = {1 \over \varsigma} \cdot {{{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \over {{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} - \varsigma}}
is nonincreasing, it follows that
\matrix{{h(\varsigma)} \hfill & {\ge h\left({{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right) = {{{{[n + \gamma + 1]}_q}} \over {{{[\gamma + 1]}_q}}} \cdot {{{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \over {{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} - {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}}}} \hfill \cr {} \hfill & {= {{{{[n + \gamma + 1]}_q}} \over {{{[\gamma + 1]}_q}}}{{{{[n + \zeta + 1]}_q}} \over {{{[n + \zeta ]}_q}}}{{{{[\zeta ]}_q} - {{[\gamma + 1]}_q}} \over {{{[\zeta + 1]}_q} - {{[\gamma + 1]}_q}}}.} \hfill \cr}
Hence, we get
{{{P_{\zeta,n,\gamma}}(\varsigma,q)} \over {{P_{\zeta + 1,n,\gamma}}(\varsigma,q)}} \ge {{{{[n + \gamma + 1]}_q}} \over {{{[\gamma + 1]}_q}}}{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta ]}_q}}}{{{{[\zeta ]}_q} - {{[\gamma + 1]}_q}} \over {{{[\zeta + 1]}_q} - {{[\gamma + 1]}_q}}}{\;_ \cdot}
By taking the hypothesis
{[\gamma ]_q} \le {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{{q^\gamma}{{[\gamma + 1]}_q} + {{[\gamma ]}_q}{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}}
which indicates that
{[n + \gamma + 1]_q}{[\zeta + 1]_q}\left({{{[\zeta ]}_q} - {{[\gamma + 1]}_q}} \right) \ge {[\gamma + 1]_q}{[n + \zeta ]_q}\left({{{[\zeta + 1]}_q} - {{[\gamma + 1]}_q}} \right),
we obtain
{{{P_{\zeta,n,\gamma}}(\varsigma,q)} \over {{P_{\zeta + 1,n,\gamma}}(\varsigma,q)}} \ge 1.
(ii) Let ζ ∈ {0,1,⋯,γ} and
{[\gamma ]_q} \le {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}
. So, we have
{{{P_{\zeta,n,\gamma}}(\varsigma)} \over {{P_{\zeta - 1,n,\gamma}}(\varsigma)}} = {{{{[n + \zeta ]}_q}} \over {{{[\zeta ]}_q}}} \cdot \varsigma \cdot {{\varsigma - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \over {\varsigma - {{{{[\zeta - 1]}_q}} \over {{{[n + \zeta - 1]}_q}}}}}.
Then, since the function
r(\varsigma) = {{{{[n + \zeta ]}_q}} \over {{{[\zeta ]}_q}}} \cdot \varsigma \cdot {{\varsigma - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \over {\varsigma - {{{{[\zeta - 1]}_q}} \over {{{[n + \zeta - 1]}_q}}}}}
is nondecreasing on
\varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
, we get
\matrix{{r(\varsigma)} \hfill & {\ge r\left({{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}}} \right) = {{{{[n + \zeta - 1]}_q}} \over {{{[\zeta ]}_q}}} \cdot {{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}} \cdot {{{{[n + \zeta ]}_q}{{[\gamma ]}_q} - {{[\zeta ]}_q}{{[n + \gamma ]}_q}} \over {{{[\gamma ]}_q}{{[n + \zeta - 1]}_q} - {{[\zeta - 1]}_q}{{[n + \gamma ]}_q}}}} \hfill \cr {} \hfill & {\ge {{{{[n + \zeta - 1]}_q}} \over {{{[\gamma - \zeta + 1]}_q}}} \cdot {{{{[\gamma ]}_q}} \over {{{[\zeta ]}_q}}} \cdot {{{{[\gamma - \zeta ]}_q}} \over {{{[n + \gamma ]}_q}}}.} \hfill \cr}
Since the hypothesis
{[\gamma ]_q} \le {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}
, we easily obtain
{{{{\widehat P}_{\zeta,n,\gamma}}(\varsigma)} \over {{{\widehat P}_{\zeta - 1,n,\gamma}}(\varsigma)}} \ge 1.
Therefore, we demonstrate the lemma.
Lemma 5
Let's indicate
{t_{n,\zeta}}(\varsigma,q) = {\left[ {\matrix{{n + \zeta} \cr \zeta \cr}} \right]_q}{\varsigma ^\zeta}
, q ∈ (0,1), γ ∈ {0, 1, 2, …} and for all
\varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
we get
\mathop \vee \limits_{\zeta = 0}^n {t_{n,\zeta}}(\varsigma,q) = {t_{n,\gamma}}(\varsigma,q).
Proof
Primarily, we demonstrate that 0 ≤ ζ and for fixed n ∈ ℕ, we get
0 \le {t_{n,\zeta + 1}}(\varsigma,q) \le {t_{n,\zeta}}(\varsigma,q)\quad {\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}\quad \varsigma \in \left[ {0,{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}}} \right].
Let's estimate the following inequality
0 \le {\left[ {\matrix{{n + \zeta + 1} \cr {\zeta + 1} \cr}} \right]_q}{\varsigma ^{\zeta + 1}} \le {\left[ {\matrix{{n + \zeta} \cr \zeta \cr}} \right]_q}{\varsigma ^\zeta},
after some simplifications by using q-Pascal rules given in (1), the previous inequality can be reduced to
0 \le \varsigma \le {{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}}.
Therefore, if we take ζ = 0,1,⋯,n in the inequality above, we get
\matrix{{{t_{n,1}}(\varsigma,q) \le {t_{n,0}}(\varsigma,q),} \hfill & {\quad {\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}\quad \varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right],} \hfill \cr {{t_{n,2}}(\varsigma,q) \le {t_{n,1}}(\varsigma,q),} \hfill & {\quad {\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}\quad \varsigma \in \left[ {0,{{{{[2]}_q}} \over {{{[n + 2]}_q}}}} \right],} \hfill \cr {{t_{n,3}}(\varsigma,q) \le {t_{n,2}}(\varsigma,q),} \hfill & {\quad {\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}\quad \varsigma \in \left[ {0,{{{{[3]}_q}} \over {{{[n + 3]}_q}}}} \right],} \hfill \cr}
and
{t_{n,\zeta + 1}}(\varsigma,q) \le {t_{n,\zeta}}(\varsigma,q),\quad {{\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}}\quad \varsigma \in \left[ {0,{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}}} \right],
and so on. The result of all these inequalities is
\matrix{{if\quad} \hfill & {\varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right]then\quad {t_{n,\zeta}}(\varsigma,q) \le {t_{n,0}}(\varsigma,q),\;forall\;\zeta = 0,1, \cdots,n;} \hfill \cr {{\rm{if}}\quad} \hfill & {\varsigma \in \left[ {{1 \over {{{[n + 1]}_q}}},{{{{[2]}_q}} \over {{{[n + 2]}_q}}}} \right]{\rm{then}}\quad {t_{n,\zeta}}(\varsigma,q) \le {t_{n,1}}(\varsigma,q),\;{\rm{for}}\,{\rm{all}}\;\zeta = 0,1, \cdots,n;} \hfill \cr {{\rm{if}}\quad} \hfill & {\varsigma \in \left[ {{{{{[2]}_q}} \over {{{[n + 2]}_q}}},{{{{[3]}_q}} \over {{{[n + 3]}_q}}}} \right]{\rm{then}}\quad {t_{n,\zeta}}(\varsigma,q) \le {t_{n,2}}(\varsigma,q),\;{\rm{for}}\,{\rm{all}}\;\zeta = 0,1, \cdots,n;} \hfill \cr}
and
{\rm{if}}\quad \varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]\;{\rm{then}}\quad {t_{n,\zeta}}(\varsigma,q) \le {t_{n,\gamma}}(\varsigma,q),\;{\rm{for}}\,{\rm{all}}\;\zeta = 0,1, \cdots,n,
which completes the proof.
4Approximation degree of
Z_n^{(M)}(f)(x;q)
The Shisha-Mond theorem, which is applicable to nonlinear max-product kind operators and is presented in [13], is used in this section to provide an error estimate for the operators
Z_n^{(M)}(f)(\varsigma ;q)
which is defined in (2), with regard to the modulus of continuity.
Theorem 6
Let's q ∈ (0,1) and the function f is a bounded and continuous on [0,1]. Then, we have
\left| {Z_n^{(M)}(f)(\varsigma ;q) - f(\varsigma)} \right| \le 18{\omega _1}\left({f;{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}} \right),
where n ≥ 4, ς ∈ [0,1] and ω1 ( f ;δ) = sup{|f (ς) − f (ζ)|;ς, ζ∈ [0,1],|ς − ζ| ≤ δ}.
Proof
Since the max-product Meyer-König and Zeller operators based on q-integers supply the conditions in Corollary 2 and we get the following
(6)
\left| {Z_n^{(M)}(f)(\varsigma ;q) - f(\varsigma)} \right| \le \left({1 + {1 \over {{\delta _n}}}Z_n^{(M)}({\eta _\varsigma},\varsigma ;q)} \right){\omega _1}\left({f;{\delta _n}} \right),
where ης (t) = |t − ς|. Estimation of the following term is enough for the proof of lemma:
Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) = {{\vee _{\zeta = 0}^\infty {t_{n,\zeta}}(\varsigma,q)\left| {{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \right|} \over {\vee _{\zeta = 0}^\infty {t_{n,\gamma}}(\varsigma,q)}}.
Let's assume that
\varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{\zeta _n}{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
, where γ ∈ {0,1,⋯} is fixed and arbitrary. From Lemma 5, we get
Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) = \mathop \vee \limits_{\zeta = 0}^\infty {P_{\zeta,n,\gamma}}(\varsigma,q).
Firstly, for γ = 0 we obtain
Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) \le {{[2](1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}
for all
\varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right]
, so we can claim that γ = {1,2,⋯}.
Indeed, for each Pζ,n,γ (ς, q) we determine an upper estimate, for γ = 0,
\varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right]
and ζ ∈ {0,1,⋯,n}. Besides, Lemma 4(i) which indicates that for ζ ≥ 2 one gets Pζ,n,0(ς, q) ≥ Pζ+1,n,0(ς, q) which means that
Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) = ma{x_{\zeta \in \left\{{0,1,2} \right\}}}\left\{{{P_{\zeta,n,0}}(\varsigma,q)} \right\},\varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right]
. For ζ= 0, we have
\matrix{{{P_{\zeta,n,0}}(\varsigma,q)} \hfill & {= \varsigma = \sqrt \varsigma \cdot \sqrt \varsigma \le \sqrt \varsigma \cdot {1 \over {\sqrt {{{[n + 1]}_q}}}} \le \sqrt \varsigma \cdot {1 \over {\sqrt {{{[n]}_q}}}}} \hfill \cr {} \hfill & {\le (1 - \varsigma)\sqrt \varsigma \cdot {1 \over {\sqrt {{{[n]}_q}}}}{1 \over {1 - \varsigma}} \le (1 - \varsigma)\sqrt \varsigma \cdot {1 \over {\sqrt {{{[n]}_q}}}}{{{{[n + 1]}_q}} \over {{{[n]}_q}}}} \hfill \cr {} \hfill & {\le {{[2](1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.} \hfill \cr}
For ζ = 1, we have
{P_{1,n,0}}(\varsigma,q) = n + {11_q}\varsigma \left| {{1 \over {{{[n + 1]}_q}}} - \varsigma} \right| \le \varsigma \le {{[2](1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.
For ζ = 2, we obtain
\matrix{{{P_{2,n,0}}(\varsigma,q)} \hfill & {= n + {{22}_q}{\varsigma ^2}\left| {{2 \over {{{[n + 2]}_q}}} - \varsigma} \right| \le {{{{[n + 1]}_q}{{[n + 2]}_q}} \over 2}{\varsigma ^2}{2 \over {{{[n + 2]}_q}}}} \hfill \cr {} \hfill & {\le {{[n + 1]}_q} \cdot \varsigma \cdot {1 \over {{{[n + 1]}_q}}} \le \varsigma \le {{[2](1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.} \hfill \cr}
Now, let's take γ = 1,2,⋯ is fixed,
\varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
and ζ = 0,1,⋯, then we get an upper estimate for each Pζ,n,γ (ς,q). Under these circumstances, the proof will be separated into the following cases:
Case 1) ζ ≥ γ + 1
Subcase a) From the hypothesis
{[\gamma ]_q} \ge {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}
which refers that
{[\zeta ]_q} \le {[\gamma ]_q} + \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}
, we get
\matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {= {p_{\zeta,n,\gamma}}(\varsigma ;q)\left({{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \right) \le {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \hfill \cr {} \hfill & {\le {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - {{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}} \le {{{{[\gamma ]}_q} + \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}} \over {{{[n + \gamma ]}_q} + \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}}} - {{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}} \over {\left({{{[n + \gamma ]}_q} + \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}} \right){{[n + \gamma ]}_q}}}.} \hfill \cr}
One can easily see that [ζ + 1]q ≤ 2[γ + 1]q, then
\sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} \le \sqrt {2{{[\gamma + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}
,
{P_{\zeta,n,\gamma}}(\varsigma ;q) \le {{{{[n]}_q}\sqrt {{{[\gamma + 1]}_q}\left({2 + {{{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}} \right)}} \over {\left({{{[n + \gamma ]}_q} + \sqrt {{{[\gamma + 1]}_q}\left({2 + {{{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}} \right)}} \right){{[n + \gamma ]}_q}}}.
From
x \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]
, we obtain
{{{{[n]}_q} + \varsigma.{q^{n + \gamma}} - {q^\gamma}} \over {1 - \varsigma}} \le {[n + \gamma ]_q}
and
{[\gamma + 1]_q} \le 2{[\gamma ]_q} \le {{2{{[n]}_q}\varsigma} \over {1 - \varsigma}}
. Because the function
{{{{[n]}_q}{{[z]}_q}} \over {\left({{{[n + \gamma ]}_q} + {{[z]}_q}} \right){{[n + \gamma ]}_q}}}
is decreasing according to γ and increasing according to z, we get
{P_{\zeta,n,\gamma}}(x;q) \le {{2{{[n]}_q}\sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}\left({1 + {{{{[n]}_q}\varsigma} \over {\left({1 - \varsigma} \right){{[n]}_q}}}} \right)}} \over {\left({{{{{[n]}_q} + \varsigma.{q^{n + \gamma}} - {q^\gamma}} \over {1 - \varsigma}} + 2\sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}\left({1 + {{{{[n]}_q}\varsigma} \over {\left({1 - \varsigma} \right){{[n]}_q}}}} \right)}} \right){{{{[n]}_q} + \varsigma.{q^{n + \gamma}} - {q^\gamma}} \over {1 - \varsigma}}}}.
By using simple calculation and taking n ≥ 4, we obtain
{P_{\zeta,n,\gamma}}(\varsigma ;q) \le {{2{{[n]}_q}(1 - \varsigma)\sqrt {{{[n]}_q}\varsigma}} \over {[n - 1]_q^2}} \le 4{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.
Subcase b) Let
{[\gamma ]_q} \le {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}
. Since the function
g(\zeta) = {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}
is non-decreasing according to ζ ≥ 0, it results that there exists
\overline \zeta \in \left\{{1,2, \cdots} \right\}
, of maximum value such that
{[\overline \zeta ]_q} - \sqrt {{{[\overline \zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} < {[\gamma ]_q}
. Then for
{\zeta _1} = \overline \zeta + 1
we get
{[{\zeta _1}]_q} - \sqrt {{{[{\zeta _1} + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} \ge {[\gamma ]_q}
. Additionally, by choosing
\overline \zeta
means that ζ1 ≤ 2[γ + 1]q. Hence, as in the prior case we obtain
{P_{\overline \zeta,n,\gamma}}(\varsigma ;q) = {p_{\overline \zeta,n,\gamma}}(\varsigma ;q)\left({{{{{[\overline \zeta + 1]}_q}} \over {{{[n + \overline \zeta + 1]}_q}}} - \varsigma} \right) \le 4{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.
Since
{[{\zeta _1}]_q} > {[{\zeta _1}]_q} - \sqrt {{{[{\zeta _1} + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} \ge {[\gamma ]_q}
, it follows [ζ1]q ≥ [γ + 1]q and Lemma 4 (i), it means that
{P_{\overline \zeta + 1,n,\gamma}}(\varsigma ;q) \ge {P_{\overline \zeta + 2,n,\gamma}}(\varsigma ;q) \ge \cdots.
Therefore, we get
{P_{\zeta,n,\gamma}}(\varsigma ;q) \le 4{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}
for any
\zeta \in \left\{{\overline \zeta + 1,\overline \zeta + 2, \cdots} \right\}
.
Case 2) Let's suppose ζ ∈ {0,1,⋯,γ}.
Subcase a) Firstly, we suppose that
{[\gamma ]_q} \le {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}
and this condition implies that
{[\zeta ]_q} \ge {[\gamma ]_q} - \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}
. Hence, we get
\matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {= {p_{\zeta,n,\gamma}}(\varsigma ;q)\left({\varsigma - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \right) \le {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}} - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \hfill \cr {} \hfill & {\le {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}} - {{{{[\gamma ]}_q} - \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}} \over {{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}}}} \hfill \cr {} \hfill & {= {{{{[n]}_q}\left({\sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}} \right)}}.} \hfill \cr}
By taking ζ ≤ γ, we get
\matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {= {{{{[n]}_q}\left({\sqrt {{{[\gamma ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\gamma ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}} \right)}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\left({\sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}{1 \over {1 - \varsigma}}} + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}{1 \over {1 - \varsigma}}}} \right)}}.} \hfill \cr}
From
{{{{[n]}_q} + \varsigma.{q^{n + \gamma}} - {q^\gamma}} \over {1 - \varsigma}} \le {[n + \gamma ]_q}
,
\matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {\le {{(1 - \varsigma){{[n]}_q}\left({\sqrt {{{[n]}_q}\varsigma} + {q^\gamma}(1 - \varsigma)} \right)} \over {\left({{{[n]}_q} + ({q^n} - 1){q^\gamma}} \right)\left({{{[n]}_q} + \varsigma {q^{n + \gamma}} - {q^\gamma} - \sqrt {{{[n]}_q}\varsigma}} \right)}}} \hfill \cr {} \hfill & {\le {{(1 - \varsigma)\left({\sqrt {{{[n]}_q}\varsigma} + {q^\gamma}(1 - \varsigma)} \right)} \over {{{[n]}_q} + \varsigma {q^{n + \gamma}} - {q^\gamma} - \sqrt {{{[n]}_q}\varsigma}}}.} \hfill \cr}
Besides, from
\gamma \ge {1 \over {n + 1}}
and n ≥ 4 we get
1 - \varsigma + \sqrt {{{[n]}_q}\varsigma} \le \sqrt {{{[n]}_q}}
and
\sqrt {{{[n]}_q}\varsigma} + 1 \le {5 \over 2}\sqrt {{{[n]}_q}\varsigma}
. Therefore,
\matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {\le {{(1 - \varsigma)\left({\sqrt {{{[n]}_q}\varsigma} + {q^\gamma}} \right)} \over {{{[n]}_q} - \sqrt {{{[n]}_q}}}} \le {5 \over 2}{{(1 - \varsigma)\sqrt {{{[n]}_q}} \sqrt \varsigma} \over {{{[n]}_q} - \sqrt {{{[n]}_q}}}}} \hfill \cr {} \hfill & {\le {{5(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.} \hfill \cr}
Subcase b) Let
{[\gamma ]_q} \ge {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}
and
\widetilde \zeta \in \left\{{1,2, \cdots,\gamma} \right\}
be the minimum value such that
{[\widetilde \zeta ]_q} + \sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} > {[\gamma ]_q}
. So,
{\zeta _2} = \widetilde \zeta - 1
verifies
{[{\zeta _2}]_q} + \sqrt {{{[{\zeta _2}]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} \le {[\gamma ]_q}
and similar to sub case (a), we get
\matrix{{{P_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q)} \hfill & {= {p_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q)\left({\varsigma - {{{{[\widetilde \zeta - 1]}_q}} \over {{{[n + \widetilde \zeta - 1]}_q}}}} \right) \le {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}} - {{{{[\widetilde \zeta - 1]}_q}} \over {{{[n + \widetilde \zeta - 1]}_q}}}} \hfill \cr {} \hfill & {\le {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}} - {{{{[\gamma ]}_q} - \sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1} \over {{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\left({\sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + 1 + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1} \right)}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\left({\sqrt {{{[\gamma ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + 1 + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\gamma ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1} \right)}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\left({\sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}{1 \over {1 - \varsigma}} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + 1 + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}{1 \over {1 - \varsigma}} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1} \right)}}} \hfill \cr {} \hfill & {\le {{(1 - \varsigma)(\sqrt {{{[n]}_q}\varsigma} + 1 + {q^\gamma})} \over {{{[n]}_q} - 1 - {q^{n + \gamma}} + (1 + {q^{n + \gamma}})\varsigma - \sqrt {{{[n]}_q}x}}}.} \hfill \cr}
From
\gamma \ge {1 \over {n + 1}}
and n ≥ 4, we immediately get
\sqrt {{{[n]}_q}x} + 1 + {q^\gamma} \le (1 + \sqrt 5)\sqrt {{{[n]}_q}\varsigma}
and it follows that
{P_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q) \le {{(1 + \sqrt 5)\sqrt {{{[n]}_q}\varsigma} (1 - \varsigma)} \over {{{[n]}_q} - 1 - {q^{n + \gamma}} + (1 + {q^{n + \gamma}})\varsigma - \sqrt {{{[n]}_q}\varsigma}}}.
Let
h(\varsigma) = {[n]_q} - 1 - {q^{n + \gamma}} + (1 + {q^{n + \gamma}})\varsigma - \sqrt {{{[n]}_q}\varsigma}
, ς ≥ 0. It is easy to show that h has a global minimum in
{\varsigma _0} = {n \over {4{{(1 + {q^{n + \gamma}})}^2}}}
. It means that
h(\varsigma) \ge h({n \over {4{{(1 + {q^{n + \gamma}})}^2}}}) = {{(3 + 4{q^{n + \gamma}}){{[n]}_q} - 4{{(1 + {q^{n + \gamma}})}^2}} \over {4{{(1 + {q^{n + \gamma}})}^2}}}
. Therefore, we obtain
{P_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q) \le {{4(1 + {q^{n + \gamma}})(1 + \sqrt 5)} \over 3}{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt n}}.
Lemma 4 (ii) gives us to
{P_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q) \ge {P_{\widetilde \zeta - 2,n,\gamma}}(\varsigma ;q) \ge \cdots \ge {P_{0,n,\gamma}}(\varsigma ;q)
. Hence, we have
{P_{\zeta,n,\gamma}}(x;q) \le {{4(1 + {q^{n + \gamma}})(1 + \sqrt 5)} \over 3}{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt n}},
for any ζ ≤ γ. Collecting all the estimates obtained above, we have
Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) \le {{4(1 + {q^{n + \gamma}})(1 + \sqrt 5)} \over 3}{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt n}}
for all ς ∈ [0,1] and choosing
{\delta _n} = {{4(1 + {q^{n + \gamma}})(1 + \sqrt 5)} \over 3}{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt n}}
in the inequality given in (6), we get the proof of the theorem.