References
- Hashmi M.S., Aslam U., Singh J., Nisar K.S., An efficient numerical scheme for fractional model of telegraph equation, Alexandria Engineering Journal, 61(8), 6383-6393, 2022.
- Baleanu D., Sajjadi S.S., Jajarmi A., Defterli O., Asad J.H., The fractional dynamics of a linear triatomic molecule, Romanian Reports in Physics, 73(1), 105, 2021.
- Nisar K.S., Ciancio A., Ali K.K., Osman M.S., Cattani C., Baleanu D., Zafar A., Raheel M., Azeem M., On beta-time fractional biological population model with abundant solitary wave structures, Alexandria Engineering Journal, 61(3), 1996-2008, 2022.
- Ullah S., Khan M.A., Farooq M., A fractional model for the dynamics of TB virus, Chaos Solitons and Fractals, 116, 63-71, 2018.
- Butt A.I.K., Ahmad W., Rafiq M., Baleanu D., Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, Alexandria Engineering Journal, 61(9), 7007-7027, 2022.
- Kirkpinar S., Abdulazeez S.T., Modanli M., Piecewise modeling of the transmission dynamics of contagious bovine pleuropneumonia depending on vaccination and antibiotic treatment, Fractals, 30(08), 2240217, 2022.
- Modanli M., Karadag K., Abdulazeez S.T., Solutions of the mobile-immobile advectiondispersion model based on the fractional operators using the Crank-Nicholson difference scheme, Chaos Solitons and Fractals, 167, 113114, 2023.
- Owolabi K.M., Atangana A., Akgul A., Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model, Alexandria Engineering Journal, 59(4), 2477-2490, 2020.
- Jajarmi A., Baleanu D., Vahid K.Z., Mobayen S., A general fractional formulation and tracking control for immunogenic tumor dynamics, Mathematical Methods in the Applied Sciences, 45(2), 667-680, 2022.
- Zhao Z., Li H., A continuous galerkin method for pseudo-hyperbolic equations with variable coefficients, Journal of Mathematical Analysis and Applications, 473(2), 1053-1072, 2019.
- Modanli M., Abdulazeez S.T., Husien A.M., A residual power series method for solving pseudo hyperbolic partial differential equations with nonlocal conditions, Numerical Methods for Partial Differential Equations, 37(3), 2235-2243, 2021.
- Mesloub S., Aboelrish M.R., Obaidat S., Well posedness and numerical solution for a non-local pseudohyperbolic initial boundary value problem, International Journal of Computer Mathematics, 96(12), 2533-2547, 2019.
- Aliev A.B., Lichaei B.H., Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations, Nonlinear Analysis Theory, Methods and Applications, 72(7-8), 3275-3288, 2010.
- Ozkan O., Kurt A., Conformable fractional double Laplace transform and its applications to fractional partial integro-differential equations, Journal of Fractional Calculus and Applications, 11(1), 70-81, 2020.
- Modanli M., Akgul A., Numerical solution of fractional telegraph differential equations by theta method, The European Physical Journal Special Topics, 226, 3693-3703, 2017.
- Akgul A., Modanli M., Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu-Caputo derivative, Chaos Solitons and Fractals, 127, 10-16, 2019.
- Zheng Y., Zhao Z., The time discontinuous space-time finite element method for fractional diffusion-wave equation, Applied Numerical Mathematics, 150(C), 105-116, 2020.
- Khan H., Shah R., Kumam P., Baleanu D., Arif M., Laplace decomposition for solving nonlinear system of fractional order partial differential equations, Advances in Difference Equations, 2020(375), 1-18, 2020.
- Yepez-Martinez H., Gomez-Aguilar J.F., Fractional sub-equation method for Hirota-Satsuma coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative, Waves in Random and Complex Media, 29(4), 678-693, 2019.
- Osman W.M., Elzaki T.M., Siddig N.A.A., Modified double conformable Laplace transform and singular fractional pseudo-hyperbolic and pseudo-parabolic equations, Journal of King Saud University Science, 33(3), 101378, 2021.
- Shah F.A., Irfan M., Nisar K.S., Matoog R.T., Mahmoud E.E., Fibonacci wavelet method for solving time-fractional telegraph equations with Dirichlet boundary conditions, Results in Physics, 24, 104123, 2021.
- Kaliraj K., Priya P.K.L., Ravichandran C., An explication of finite-time stability for fractional delay model with neutral impulsive conditions, Qualitative Theory of Dynamical Systems, 21(4), 161, 2022.
- Manjula M., Kaliraj K., Botmart T., Nisar K.S., Ravichandran C., Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses, AIMS Mathematics, 8(2), 4645-4665, 2023.
- Morsy A., Nisar K.S., Ravichandran C., Anusha C., Sequential fractional order neutral functional integro differential equations on time scales with Caputo fractional operator over Banach spaces, AIMS Mathematics, 8(3), 5934-5949, 2023.
- Akinyemi L., Veeresha P., Ajibola S.O., Numerical simulation for coupled nonlinear Schrödinger-Korteweg-de Vries and Maccari systems of equations, Modern Physics Letters B, 35(20), 2150339, 2021.
- Veeresha P., Prakasha D.G., Singh J., Khan I., Kumar D., Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel, Advances in Difference Equations, 2020(174), 1-14, 2020.
- Modanli M., Bajjah B., Double Laplace decomposition method and finite difference method of time fractional Schrödinger pseudoparabolic partial differential equation with Caputo derivative, Journal of Mathematics, 2021(7113205), 1-10, 2021.
- Khan A., Khan T.S., Syam M.I., Khan H., Analytical solutions of time-fractional wave equation by double Laplace transform method, The European Physical Journal Plus, 134(4), 163, 2019.
- Abdulazeez S.T., Modanli M., Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method, Alexandria Engineering Journal, 61(12), 12443-12451, 2022.
- Podlubny I., Fractional differential equations: An introduction to fractional derivatives, Academic Press, 1998.
- Modanli M., Comparison of Caputo and Atangana-Baleanu fractional derivatives for the pseudohyperbolic telegraph differential equations, Pramana, 96(7), 1-7, 2022.
- Dhunde R.R., Waghmare G.L., Double Laplace transform method for solving space and time fractional telegraph equations, International Journal of Mathematics and Mathematical Sciences, 2016(1414595), 1-8, 2016.
- Debnath L., The double Laplace transforms and their properties with applications to functional, integral and partial differential equations, International Journal of Applied and Computational Mathematics, 2, 223-241, 2016.