Have a personal or library account? Click to login
Analytic solution of fractional order Pseudo-Hyperbolic Telegraph equation using modified double Laplace transform method Cover

Analytic solution of fractional order Pseudo-Hyperbolic Telegraph equation using modified double Laplace transform method

Open Access
|Jul 2023

Abstract

The Pseudo-Hyperbolic Telegraph partial differential equation (PHTPDE) based on the Caputo fractional derivative is investigated in this paper. The modified double Laplace transform method (MDLTM) is constructed for the proposed model. The MDLTM was used to obtain the analytic solution for the pseudo-hyperbolic telegraph equation of fractional order defined by the Caputo derivative. The proposed method is a highly effective analytical method for the fractional-order pseudo-hyperbolic telegraph equation. A test problem was presented as an example. Based on the results, it is clear that this method is more convenient and produces an analytic solution in fewer steps than other methods that require more steps to have an identical analytical solution. This paper claims to provide an analytic solution to the fractional order pseudohyperbolic telegraph equation order using the MDLTM. An analytical solution leads to an exact, closed-form solution that can be expressed in mathematical functions or known operations. Obtaining analytic solutions to PDEs is often challenging, especially for fractional order equations, making this achievement noteworthy.

Language: English
Page range: 105 - 114
Submitted on: Apr 10, 2023
Accepted on: Jun 1, 2023
Published on: Jul 20, 2023
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Sadeq Taha Abdulazeez, Mahmut Modanli, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.