Have a personal or library account? Click to login
Players’ Performance Prediction for Fantasy Premier League, Using Transformer-based Sentiment Analysis on News and Statistical Data Cover

Players’ Performance Prediction for Fantasy Premier League, Using Transformer-based Sentiment Analysis on News and Statistical Data

By: M. Tamimi and  T. Tran  
Open Access
|May 2025

References

  1. AllAboutFPL. (2022, June). Number of people who played FPL each season: How many play FPL? https://allaboutfpl.com/2022/06/number-of-people-who-played-fpl-each-season-how-many-play-fpl/
  2. Ati, A., Bouchet, P., & Ben Jeddou, R. (2024). Using multi-criteria decision-making and machine learning for football player selection and performance prediction: a systematic review. Data Science and Management, 7(2), 79–88. https://doi.org/10.1016/j.dsm.2023.11.001
  3. Bangdiwala, M., Choudhari, R., Hegde, A., & Salunke, A. (2022). Using ML Models to Predict Points in Fantasy Premier League. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), 1–6. https://doi.org/10.1109/ASIANCON55314.2022.9909447
  4. Baughman, A., Forester, M., Powell, J., Morales, E., McPartlin, S., & Bohm, D. (2021). Deep Artificial Intelligence for Fantasy Football Language Understanding. http://arxiv.org/abs/2111.02874
  5. Beal, R., Middleton, S. E., Norman, T. J., & Ramchurn, S. D. (2021). Combining Machine Learning and Human Experts to Predict Match Outcomes in Football: A Baseline Model. Proceedings of the AAAI Conference on Artificial Intelligence, 35(17), 15447–15451. https://doi.org/10.1609/aaai.v35i17.17815
  6. Beal, R., Norman, T. J., & Ramchurn, S. D. (2020). Optimising Daily Fantasy Sports Teams with Artificial Intelligence. International Journal of Computer Science in Sport, 19(2), 21–35. https://doi.org/10.2478/ijcss-2020-0008
  7. Bonello, N., Beel, J., Lawless, S., & Debattista, J. (2019). Multi-stream Data Analytics for Enhanced Performance Prediction in Fantasy Football. https://doi.org/10.48550/arXiv.1912.07441
  8. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
  9. Chmait, N., & Westerbeek, H. (2021). Artificial Intelligence and Machine Learning in Sport Research: An Introduction for Non-data Scientists. Frontiers in Sports and Active Living, 3, 363. https://doi.org/10.3389/fspor.2021.682287
  10. Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. https://doi.org/10.48550/arXiv.1810.11363
  11. Frees, D., Ravella, P., & Zhang, C. (2024). Deep learning and transfer learning architectures for english premier league player performance forecasting. https://doi.org/10.48550/arXiv.2405.02412
  12. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
  13. Giles, B., Kovalchik, S., & Reid, M. (2020). A machine learning approach for automatic detection and classification of changes of direction from player tracking data in professional tennis. Journal of Sports Sciences, 38(1), 106–113. https://doi.org/10.1080/02640414.2019.1684132
  14. Gupta, A. (2019). Time Series Modeling for Dream Team in Fantasy Premier League. https://doi.org/10.48550/arXiv.1909.12938
  15. Hermann, E., & Ntoso, A. (2015). Machine learning applications in fantasy basketball. https://api.semanticscholar.org/CorpusID:15791576
  16. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  17. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67. https://www.tandfonline.com/doi/bs/10.1080/00401706.1970.10488634
  18. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
  19. Leventer, L., Eek, F., Hofstetter, S., & Lames, M. (2016). Injury Patterns among Elite Football Players: A Media-based Analysis over 6 Seasons with Emphasis on Playing Position. International Journal of Sports Medicine, 37(11), 898–908. https://doi.org/10.1055/s-0042-108201
  20. Lombu, A. S., Paputungan, I. V, & Dewa, C. K. (2024). Predicting fantasy premier league points using convolutional neural network and long short term memory. Jurnal Teknik Informatika (Jutif), 5(1), 263–272. https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/1792
  21. March, S. (2024). Ex-winner Simon March: What does value really mean in FPL? Fantasy Football Scout. https://www.fantasyfootballscout.co.uk/2024/09/11/exwinner-simon-march-what-does-value-really-mean-in-fpl
  22. O’Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks. http://arxiv.org/abs/1511.08458
  23. Pérez, J. M., Rajngewerc, M., Giudici, J. C., Furman, D. A., Luque, F., Alemany, L. A., & Martínez, M. V. (2021). pysentimiento: A Python Toolkit for Opinion Mining and Social NLP tasks. http://arxiv.org/abs/2106.09462
  24. Rajesh, V., Arjun, P., Jagtap, K. R., M, S. C., & Prakash, J. (2022). Player Recommendation System for Fantasy Premier League using Machine Learning. 2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE), 1–6. https://doi.org/10.1109/JCSSE54890.2022.9836260
  25. Ramdas, D. (2022). Using convolution neural networks to predict the performance of footballers in the fantasy premier league. https://doi.org/10.13140/RG.2.2.10010.72645/2
  26. Schumaker, R. P., Jarmoszko, A. T., & Labedz, C. S. (2016). Predicting wins and spread in the Premier League using a sentiment analysis of twitter. Decision Support Systems, 88, 76–84. https://doi.org/10.1016/j.dss.2016.05.010
  27. Shah, D., Kapadia, P., Kakwani, H., & Dabre, K. (2023). Multi Criteria Decision Making in Fantasy Sports. 2023 IEEE Pune Section International Conference (PuneCon), 1–6. https://doi.org/10.1109/PuneCon58714.2023.10450054
  28. Szymanski, S., & Smith, R. (1997). The English Football Industry: profit, performance and industrial structure. International Review of Applied Economics, 11(1), 135–153. https://doi.org/10.1080/02692179700000008
  29. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems, 30. https://doi.org/10.48550/arXiv.1706.03762
  30. Wright, C., Carling, C., & Collins, D. (2014). The wider context of performance analysis and it application in the football coaching process. International Journal of Performance Analysis in Sport, 14(3), 709–733. https://doi.org/10.1080/24748668.2014.11868753
Language: English
Page range: 133 - 147
Published on: May 5, 2025
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 M. Tamimi, T. Tran, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.