Have a personal or library account? Click to login
Estimating the Relevance of First Offensive Shot Tactics in Table Tennis via Simulation Based on a Finite Markov Chain Model Cover

Estimating the Relevance of First Offensive Shot Tactics in Table Tennis via Simulation Based on a Finite Markov Chain Model

By: F. Rothe,  R. Liu and  M. Lames  
Open Access
|Mar 2025

References

  1. Djokić, Z., Malagoli Lanzoni, I., Katsikadelis, M., & Straub, G. (2020). Serve analyses of elite European table tennis matches. International Journal of Racket Sports Science 2(1), 1–8.
  2. Fuchs, M., & Lames, M. (2021). First Offensive Shot in Elite Table Tennis. International Journal of Racket Sports Science, 3(1), 10–21.
  3. Galeano, J., Gómez, M.-Á., Rivas, F., & Buldú, J. M. (2022). Using Markov chains to identify player’s performance in badminton. Chaos, Solitons & Fractals, 165, 112828.
  4. Hughes, M., & Bartlett, R. (2002). The use of performance indicators in performance analysis. Journal of Sports Sciences, 20, 739–754. doi:10.1080/026404102320675602
  5. Hughes, M., Evans, S., & Wells, J. (2001). Establishing normative profiles in performance analysis. International Journal of Performance Analysis in Sport, 1, 1–26. doi:10.1080/24748668.2001.11868245
  6. Kemeny, J. G., & Snell, J. L. (1976). Markov chains. New York: Springer-Verlag.
  7. Kolbush, J., & Sokol, J. (2017). A logistic regression/Markov chain model for American college football. International Journal of Computer Science in Sport, 16(3), 185–196.
  8. Lames, M. (1991). Leistungsdiagnostik durch Computersimulation: Ein Beitrag zur Theorie der Sportspiele am Beispiel Tennis. Frankfurt a.M.: Verlag Harri Deutsch.
  9. Lames, M. (1994). Systematische Spielbeobachtung. Münster: Philippka.
  10. Lames, M. (2020). Markov Chain Modelling And Simulations In Net Games. In C. Ley & Y. Dominicy (Eds.), Science Meets Sports: When Statistics Are More Than Numbers (pp. 147–170): Cambridge Scholars Publishing.
  11. Lames, M. (2023). Performance Analysis in Game Sports: Concepts and Methods. Cham: Springer Nature.
  12. Lames, M., & McGarry, T. (2007). On the search for reliable performance indicators in game sports. International Journal of Performance Analysis in Sport, 7(1), 62–79.
  13. Liu, T., Zhou, C., Shuai, X., Zhang, L., Zhou, J., & Yang, L. (2022). Influence of different playing styles among the top three teams on action zones in the World Cup in 2018 using a Markov state transition matrix. Frontiers in Psychology, 13, 1038733.
  14. Marino, T. K., Ferreira, A. R., Morgans, R., Schildberg, W. T., Aoki, M. S., Corrêa, U. C., & Moreira, A. (2023). The emergence of critical incidents in Rugby Union matches using Markov chain analysis. Science and medicine in football, 7(4), 323–330.
  15. McGarry, T. (2009). Applied and theoretical perspectives of performance analysis in sport: Scientific issues and challenges. International Journal of Performance Analysis in Sport, 9(1), 128–140.
  16. Newton, P. K., & Aslam, K. (2009). Monte Carlo tennis: a stochastic Markov chain model. Journal of Quantitative Analysis in Sports, 5(3).
  17. O’Donoghue, P. (2005). Normative profiles of sports performance. International Journal of Performance Analysis in Sport, 5(1), 104–119.
  18. Parlebas, P. (1985). Modélisation du jeu sportif: le système des scores du volley-ball. Mathématiques et Sciences humaines, 91, 57–80.
  19. Pfeifer, P. E., & Deutsch, S. J. (1981). A probabilistic model for evaluation of volleyball scoring systems. Research quarterly for exercise and sport, 52(3), 330–338.
  20. Pfeiffer, M., Zhang, H., & Hohmann, A. (2010). A Markov chain model of elite table tennis competition. International Journal of Sports Science & Coaching, 5(2), 205–222.
  21. Rothe, F., & Lames, M. (2022). Simulation of Tennis Behaviour Using Finite Markov Chains. IFAC-PapersOnLine, 55(20), 606–611.
  22. Rothe, F., & Lames, M. (2023). Markov-chain Modelling and Simulative Assessment of the Impact of Selected Tactical Behaviours in Modern Tennis. International Journal of Racket Sports Science(5(1)).
  23. Sampaio, J., & Leite, N. (2013). Performance indicators in game sports. In T. McGarry, P. O’Donoghue, & J. Sampaio (Eds.), Routledge handbook of sports performance analysis (pp. 115–126): Routledge.
  24. Wiesener, F. (2022). The “First Offensive Shot (FOS)” in Table Tennis - technique and tactics at the Tokyo 2020 Olympic Games. (Bachelor-Thesis). TU Munich,
  25. Yu, J., & Gao, P. (2022). Interactive three-phase structure for table tennis performance analysis: application to elite men’s singles matches. Journal of Human Kinetics, 81(1), 177–188.
  26. Zhang, H., & Zhou, Z. (2017). An analytical model of the two basic situation strategies in table tennis. International Journal of Performance Analysis in Sport, 17(6), 970–985.
Language: English
Page range: 1 - 16
Published on: Mar 2, 2025
Published by: International Association of Computer Science in Sport
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 F. Rothe, R. Liu, M. Lames, published by International Association of Computer Science in Sport
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.