Have a personal or library account? Click to login
Research on a Lightweight Small Object Detection Method Based on Lite-RFB Modules Cover

Research on a Lightweight Small Object Detection Method Based on Lite-RFB Modules

By: Fei Wang and  Liping Lu  
Open Access
|Dec 2025

References

  1. Tan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10096-10105).
  2. Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M, & Adam, H. (2019). Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1314-1324).
  3. Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2020). Focal Loss for Dense Object Detection. International Journal of Computer Vision, 128(3), 640-657.
  4. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
  5. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
  6. Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2020). Path aggregation network for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9206-9215).
  7. Wang, C. Y., Mark Liao, H. Y., & Wu, Y. H. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7264-7275).
  8. Jocher, G. (2020). Yolov5: YOLOv5 by Ultralytics. GitHub Repository. https://github.com/ultralytics/yolov5.
  9. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 658-666).
  10. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2021). Deformable DETR: Deformable transformers for end-to-end object detection. International Journal of Computer Vision, 129(6), 1553-1569.
  11. Wang, D., Li, S., & Guo, Y. (2022). A Lightweight Small Object Detection Algorithm Based on Improved YOLOv5. Acta Automatica Sinica, 48(5), 1201-1210.
  12. Zhang, T., Liu, J., & Guo, Y. (2021). A Survey of Lightweight Object Detection Algorithms for Complex Scenes. Chinese Journal of Computers, 44(8), 1623-1645.
  13. Chen, X., Li, X., & Jiao, L. (2020). Research on Small Object Detection Algorithm Fusing Multi-Scale Features. Journal of Image and Graphics, 25(7), 1345-1356.
  14. Zhao, Y., Wang, N., & Ding, X. (2023). Small Object Detection in Remote Sensing Images Based on Attention Mechanism and Feature Fusion. Journal of Electronics & Information Technology, 45(2), 456-464.
  15. Sun, H., Wang, L., & Tan, T. (2022). Optimization and Implementation of Real-Time Object Detection Algorithms for Edge Computing. Journal of Computer Research and Development, 59(9), 1987-2001.
Language: English
Page range: 94 - 103
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Fei Wang, Liping Lu, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.