References
- Xu, S., Sun, C., & Liu, N. (2024). Road congestion and air pollution-analysis of spatial and temporal congestion effects. Science of The Total Environment, 945, 173896.
- Majstorović, Ž., Tišljarić, L., Ivanjko, E., & Carić, T. (2023). Urban traffic signal control under mixed traffic flows: Literature review. Applied Sciences, 13(7), 4484.
- Qadri, S. S. S. M., Gökçe, M. A., & Öner, E. (2020). State-of-art review of traffic signal control methods: challenges and opportunities. European transport research review, 12, 1-23.
- Qadri, S. S. S. M., Gökçe, M. A., & Öner, E. (2020). State-of-art review of traffic signal control methods: challenges and opportunities. European transport research review, 12, 1-23.
- Moganarangan, N., Balaji, N., Suresh Kumar, R. G., Balaji, S., & Palanivel, N. (2018). Study on static and dynamic traffic control systems. International Journal of Pure and Applied Mathematics, 119(12), 565-579.
- **ng, J., Wei, D., Zhou, S., Wang, T., Huang, Y., & Chen, H. (2024). A comprehensive study on self-learning methods and implications to autonomous driving. IEEE Transactions on Neural Networks and Learning Systems.
- Zhao, Z., Wang, K., Wang, Y., & Liang, X. (2024). Enhancing traffic signal control with composite deep intelligence. Expert Systems with Applications, 244, 123020.
- Li, G., Wang, J., Zhao, Z., Chen, Y., Tang, L., & Li, Q. (2024). Advancing complex urban traffic forecasting: A fully attentional spatial-temporal network enhanced by graph representation. International Journal of Applied Earth Observation and Geoinformation, 134, 104237.
- He, S., Sang, X., Yin, J., Zheng, Y., & Chen, H. (2023). Short-term runoff prediction optimization method based on BGRU-BP and BLSTM-BP neural networks. Water Resources Management, 37(2), 747-768.
- Wu, Z., Wang, S., Ni, C., & Wu, J. (2024). Adaptive traffic signal timing optimization using deep reinforcement learning in urban networks. Artificial Intelligence and Machine Learning Review, 5(4), 55-68.
- Xu, D., Cheng, W., Luo, D., Gu, Y., Liu, X., Ni, J., … & Zhang, X. (2019, November). Adaptive neural network for node classification in dynamic networks. In 2019 IEEE International Conference on Data Mining (ICDM) (pp. 1402-1407). IEEE.
- Zhang, M., Huang, T., Guo, Z., & He, Z. (2022). Complex-network-based traffic network analysis and dynamics: A comprehensive review. Physica A: Statistical Mechanics and its Applications, 607, 128063.
- Sun, C., Li, C., Lin, X., Zheng, T., Meng, F., Rui, X., & Wang, Z. (2023). Attention-based graph neural networks: a survey. Artificial intelligence review, 56(Suppl 2), 2263-2310.