References
- Matthies, L., Maimone, M., Johnson, A. et al. Computer Vision on Mars. Int J Comput Vis 75, 67–92 (2007). https://doi.org/10.1007/s11263-007-0046-z
- Francis, R., Estlin, T., Doran, G., Johnstone, S., Gaines, D., Verma, V., Burl, M., Frydenvang, J., Montaño, S., Wiens, R. C., Schaffer, S., Gasnault, O., DeFlores, L., Blaney, D., & Bornstein, B. (2017). AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use. Science robotics, 2(7), eaan4582. https://doi.org/10.1126/scirobotics.aan4582
- Estlin, T. A., Bornstein, B. J., Gaines, D. M., Anderson, R. C., Thompson, D. R., Burl, M., Castaño, R., & Judd, M. (2012). AEGIS Automated Science Targeting for the MER Opportunity Rover. ACM Transactions on Intelligent Systems and Technology, 3(3), 1–19. https://doi.org/10.1145/2168752.2168764
- Castano, R., Estlin, T., Anderson, R. C., Gaines, D. M., Castano, A., Bornstein, B., Chouinard, C., & Judd, M. (2007). Oasis: Onboard autonomous science investigation system for opportunistic rover science. Journal of Field Robotics, 24(5), 379–397. https://doi.org/10.1002/rob.20192
- Gaines, D. (n.d.). Mars 2020 Project The Mars 2020 OnBoard Planner: Flight Software Mars 2020 OBP Team. Retrieved August 14, 2025, from https://ai.jpl.nasa.gov/public/documents/presentations/m2020-2-fsw.pdf
- Li, Y., Xiao, Z., Ma, C., Zeng, L., Zhang, W., Peng, M., & Li, A. (2023). Extraction and analysis of three-dimensional morphological features of centimeter-scale rocks in Zhurong landing region. Journal of Geophysical Research: Planets, 128, e2022JE007656. https://doi.org/10.1029/2022JE007656
- Pang, B., Nijkamp, E., & Wu, Y. N. (2020). Deep learning with tensorflow: A review. Journal of Educational and Behavioral Statistics, 45(2), 227-248.
- Abadi, M. (2016, September). TensorFlow: learning functions at scale. In Proceedings of the 21st ACM SIGPLAN international conference on functional programming (pp. 1-1).
- Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J, & Zheng, X. (2016). {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265-283).
- Shukla, N., & Fricklas, K. (2018). Machine learning with TensorFlow (Vol. 7, No. 06, p. 274). Greenwich: Manning.
- Singh, P., & Manure, A. (2019). Introduction to tensorflow 2.0. In Learn TensorFlow 2.0: Implement machine learning and deep learning models with python (pp. 1-24). Berkeley, CA: Apress.
- Zhang, Y., Chen, Y., Cheung, S. C., Xiong, Y., & Zhang, L. (2018, July). An empirical study on tensorflow program bugs. In Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis (pp. 129-140).
- Smilkov, D., Thorat, N., Assogba, Y., Nicholson, C., Kreeger, N., Yu, P., … & Wattenberg, M. M. (2019). Tensorflow. js: Machine learning for the web and beyond. Proceedings of Machine Learning and Systems, 1, 309-321.
- Hope, T., Resheff, Y. S., & Lieder, I. (2017). Learning tensorflow: A guide to building deep learning systems. " O'Reilly Media, Inc.".
- Pattanayak, S., Pattanayak, J. S., & John, S. (2017). Pro deep learning with tensorflow (pp. 153-278). New York, NY, USA: Apress.
- Sanchez, S. A., Romero, H. J., & Morales, A. D. (2020, May). A review: Comparison of performance metrics of pretrained models for object detection using the TensorFlow framework. In IOP conference series: materials science and engineering (Vol. 844, No. 1, p. 012024). IOP Publishing.
- Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., & Sharma, R. (2020, May). Cryptflow: Secure tensorflow inference. In 2020 IEEE Symposium on Security and Privacy (SP) (pp. 336-353). IEEE.
- Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A., Koanantakool, P., … & Hechtman, B. (2018). Meshtensorflow: Deep learning for supercomputers. Advances in neural information processing systems, 31.
- Zafar, I., Tzanidou, G., Burton, R., Patel, N., & Araujo, L. (2018). Hands-on convolutional neural networks with TensorFlow: Solve computer vision problems with modeling in TensorFlow and Python. Packt Publishing Ltd.
- Ertam, F., & Aydın, G. (2017, October). Data classification with deep learning using Tensorflow. In 2017 international conference on computer science and engineering (UBMK) (pp. 755-758). IEEE.
- Culjak, I., Abram, D., Pribanic, T., Dzapo, H., & Cifrek, M. (2012, May). A brief introduction to OpenCV. In 2012 proceedings of the 35th international convention MIPRO (pp. 1725-1730). IEEE.
- Howse, J. (2013). OpenCV computer vision with python (Vol. 27). Birmingham, UK: Packt Publishing.
- Kaehler, A., & Bradski, G. (2016). Learning OpenCV 3: computer vision in C++ with the OpenCV library. " O'Reilly Media, Inc.".
- Xie, G., & Lu, W. (2013). Image edge detection based on opencv. International Journal of Electronics and Electrical Engineering, 1(2), 104-106.
- Yang, J. (2023, October). Real time object tracking using OpenCV. In 2023 IEEE 3rd International Conference on Data Science and Computer Application (ICDSCA) (pp. 1472-1475). IEEE.
- Sharma, A., Pathak, J., Prakash, M., & Singh, J. N. (2021, December). Object detection using OpenCV and python. In 2021 3rd international conference on advances in computing, communication control and networking (ICAC3N) (pp. 501-505). IEEE.
- Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational intelligence and neuroscience, 2018(1), 7068349.
- Szeliski, R. (2022). Computer vision: algorithms and applications. Springer Nature.
- Khan, A. I., & Al-Habsi, S. (2020). Machine learning in computer vision. Procedia Computer Science, 167, 1444-1451.
- Ikeuchi, K. (Ed.). (2021). Computer vision: A reference guide. Cham: Springer International Publishing.
- Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo algorithm developments. Procedia computer science, 199, 1066-1073.
- Terven, J., Córdova-Esparza, D. M., & Romero-González, J. A. (2023). A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8 and yolo-nas. Machine learning and knowledge extraction, 5(4), 1680-1716.
- Hussain, M. (2023). YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines, 11(7), 677.
- Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023). Object detection using YOLO: challenges, architectural successors, datasets and applications. multimedia Tools and Applications, 82(6), 9243-9275.
- Kalaiselvi, T., Sriramakrishnan, P., & Somasundaram, K. (2017). Survey of using GPU CUDA programming model in medical image analysis. Informatics in Medicine Unlocked, 9, 133-144.
- Dehal, R. S., Munjal, C., Ansari, A. A., & Kushwaha, A. S. (2018, October). Gpu computing revolution: Cuda. In 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN) (pp. 197-201). IEEE.
- (2015). Spie.org. https://www.spie.org/news/5950-laser-induced-breakdown-spectroscopy-for-identification-of-solid-recycled-materials
- Fuentes, R., Luarte, D., Sandoval, C., Myakalwar, A. K., Alvarez, J., Yáñez, J., & Sbarbaro, D. (2022). Laser-Induced Breakdown Spectroscopy and Hyperspectral Imaging Data Fusion for improved Mineralogical Analysis of Copper Concentrates. IFAC-PapersOnLine, 55(21), 85–90. https://doi.org/10.1016/j.ifacol.2022.09.248
- Bakker, M. C. M., & Xia, H. (2015). Laser-induced breakdown spectroscopy for identification of solid recycled materials. SPIE Newsroom. https://doi.org/10.1117/2.1201505.005950
- Rietsche, R., Dremel, C., Bosch, S., Steinacker, L., Meckel, M., & Leimeister, J. M. (2022). Quantum computing. Electronic Markets, 32(4), 2525-2536.
- Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
- Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferová, M., … & Aspuru-Guzik, A. (2019). Quantum chemistry in the age of quantum computing. Chemical reviews, 119(19), 10856-10915.
- Gyongyosi, L., & Imre, S. (2019). A survey on quantum computing technology. Computer Science Review, 31, 51-71.
- Bova, F., Goldfarb, A., & Melko, R. G. (2021). Commercial applications of quantum computing. EPJ quantum technology, 8(1), 2.
- Bayerstadler, A., Becquin, G., Binder, J., Botter, T., Ehm, H., Ehmer, T., … & Winter, F. (2021). Industry quantum computing applications. EPJ Quantum Technology, 8(1), 25.
- Alvarez-Rodriguez, U., Sanz, M., Lamata, L., & Solano, E. (2018). Quantum artificial life in an IBM quantum computer. Scientific reports, 8(1), 14793.
- Acasiete, F., Agostini, F. P., Moqadam, J. K., & Portugal, R. (2020). Implementation of quantum walks on IBM quantum computers. Quantum Information Processing, 19(12), 426.
- Cruz, D., Fournier, R., Gremion, F., Jeannerot, A., Komagata, K., Tosic, T., & Javerzac‐Galy, C. (2019). Efficient quantum algorithms for GHZ and W states, and implementation on the IBM quantum computer. Advanced Quantum Technologies, 2(5-6), 1900015.
- AbuGhanem, M. (2025). IBM quantum computers: evolution, performance, and future directions. The Journal of Supercomputing, 81(5), 687.