References
- S. M. Marvasti-Zadeh, L. Cheng, H. Ghanei-Yakhdan, and S. Kasaei, “Deep Learning for Visual Tracking: A Comprehensive Survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 5, pp. 3943–3968, 2022, doi: 10.1109/TITS.2020.3046478.
- Y. Zhang, T. Wang, K. Liu, B. Zhang, and L. Chen, “Recent advances of single-object tracking methods: Abrief survey,” Neurocomputing, vol. 455, pp. 1–11, 2021, doi:https://doi.org/10.1016/j.neucom.2021.05.011.
- J. Zhang, J. Sun, J. Wang, and X.-G. Yue, “Visual object tracking based on residual network and cascaded correlation filters,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 8, pp. 8427–8440, Aug. 2021, doi: 10.1007/s12652-020-02572-0.
- F. Chen, X. Wang, Y. Zhao, S. Lv, and X. Niu, “Visual object tracking: A survey,” Computer Vision and Image Understanding, vol. 222, p. 103508, 2022, doi: https://doi.org/10.1016/j.cviu.2022.103508.
- J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Deep learning in computer vision: A critical review of emerging techniques and application scenarios,” Machine Learning with Applications, vol. 6, p. 100134, 2021, doi: https://doi.org/10.1016/j.mlwa.2021.100134.
- K. Tong and Y. Wu, “Deep learning-based detection from the perspective of small or tiny objects: A survey,” Image and Vision Computing, vol. 123, p. 104471, 2022, doi: https://doi.org/10.1016/j.imavis.2022.104471.
- Y. Zhang, L. Wang, D. Wang, J. Qi, and H. Lu, “Learning Regression and Verification Networks for Robust Long-term Tracking,” International Journal of Computer Vision, vol. 129, no. 9, pp. 2536–2547, Sep. 2021, doi: 10.1007/s11263-021-01487-3.
- E. Tian, Y. Lei, J. Sun, K. Zhou, B. Zhou, and H. Li, “The Segmentation Tracker With Mask-Guided Background Suppression Strategy,” IEEE Access, vol. 12, pp. 124032–124044, 2024, doi: 10.1109/ACCESS.2024.3451229.
- K. Dai, Y. Zhang, D. Wang, J. Li, H. Lu, and X. Yang, “High-Performance Long-Term Tracking With MetaUpdater,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020.
- L. Huang, X. Zhao, and K. Huang, “GlobalTrack: A Simple and Strong Baseline for Long-Term Tracking,” AAAI, vol. 34, no. 07, pp. 11037–11044, Apr. 2020, doi: 10.1609/aaai.v34i07.6758.
- H. Fan et al., “LaSOT: A High-quality Large-scale Single Object Tracking Benchmark,” International Journal of Computer Vision, vol. 129, no. 2, pp. 439–461, Feb. 2021, doi: 10.1007/s11263-020-01387-y.
- R. Faster, “Towards real-time object detection with region proposal networks,” Advances in neural information processing systems, vol. 9199, no. 10.5555, pp. 2969239–2969250, 2015.
- L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr, “Fully-Convolutional Siamese Networks for Object Tracking,” in Computer Vision - ECCV 2016 Workshops, G. Hua and H. Jégou, Eds., Cham: Springer International Publishing, 2016, pp. 850–865.
- B. Li et al., “Evolution of siamese visual tracking with very deep networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019, pp. 15–20.
- M. Zolfaghari, K. Singh, and T. Brox, “Eco: Efficient convolutional network for online video understanding,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 695–712.
- A. Lukežič, L. Č. Zajc, T. Vojíř, J. Matas, and M. Kristan, “Now you see me: evaluating performance in long-term visual tracking,” arXiv preprint arXiv:1804.07056, 2018.
- L. Leal-Taixé, A. Milan, I. Reid, S. Roth, K. M. Schindler, and M. Challenge, “Towards a benchmark for multi-target tracking,” arXiv preprint arXiv:1504.01942, vol. 34, 2015.