Have a personal or library account? Click to login
9D Rotation Representation-SVD Fusion with Deep Learning for Unconstrained Head Pose Estimation Cover

9D Rotation Representation-SVD Fusion with Deep Learning for Unconstrained Head Pose Estimation

By: Jiaqi Lyu and  Changyuan Wang  
Open Access
|Sep 2024

References

  1. Strazdas Dominykas, Hintz Jan, AlHamadi Ayoub. Robo-hud: interaction concept for contactless operation of industrial cobotic systems [J]. Applied Sciences, 2021, 11(12):5366-5366.
  2. CHARISSIS V, FALAH J, LAGOO R, et al. Employing emerging technologies to develop and evaluate in-vehicle intelligent systems for driver support: infotainment ar hud case study [J]. Applied Sciences, 2021,11(4):1397-1397.
  3. Werner, P., Saxen, F., & Al-Hamadi, A. Landmark based head pose estimation benchmark and method. In ICIP, 2017.
  4. Ruiz, N., Chong, E., & Rehg, J. M. Fine-grained head pose estimation without keypoints. In CVPR, 2018.
  5. Hsu H W, Wu T Y, Wan S, et al. QuatNet: QuaternionBased Head Pose Estimation with Multiregression Loss [J]. Multimedia, IEEE Transactions on, 2018. DOI:10.1109/TMM.2018.2866770.
  6. Huang B, Chen R, Xu W, et al. Improving head pose estimation using two-stage ensembles with top-k regression [J]. Image and Vision Computing, 2019, 93.DOI:10.1016/j.imavis.2019.11.005.
  7. Zhou Y, Gregson J. WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose [J]. 2020. DOI:10.48550/arXiv.2005.10353.
  8. Yang T Y, Chen Y T, Lin Y Y, et al. FSA-Net: Learning Fine-Grained Structure Aggregation for Head Pose Estimation from a Single Image [J]. IEEE, 2020. DOI:10.1109/CVPR.2019.00118.
  9. Cao Z, Chu Z, Liu D, et al. A Vector-based Representation to Enhance Head Pose Estimation[C]//Workshop on Applications of Computer Vision. IEEE, 2021. DOI:10.1109/WACV48630.2021.00123.
  10. Zhang H, Wang M, Liu Y, et al. FDN: Feature Decoupling Network for Head Pose Estimation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12789-12796. DOI:10.1609/aaai.v34i07.6974.
  11. Dhingra N. LwPosr: Lightweight Efficient FineGrained Head Pose Estimation [J]. arXiv e-prints, 2022. DOI:10.48550/arXiv.2202.03544.
  12. Zhou Y, Barnes C, Lu J, et al. On the Continuity of Rotation Representations in Neural Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. DOI:10.1109/CVPR.2019.00589.
  13. Geist A R, Frey J, Zobro M, et al. Learning with 3D rotations, a hitchhiker’s guide to SO (3) [J]. arxiv preprint arxiv:2404.11735, 2024.
  14. Tan M, Le Q V. EfficientNetV2: Smaller Models and Faster Training [J]. 2021. DOI:10.48550/arXiv.2104.00298.
  15. Xiangyu Zhu, Zhen Lei, Xiaoming Liu 0002, et al. Face alignment across large poses: a 3d solution. [J]. CoRR, 2015.
  16. Zhu X, Lei Z, Yan J, et al. High-fidelity Pose and Expression Normalization for face recognition in the wild [J]. IEEE, 2015. DOI:10.1109/CVPR.2015.7298679.
  17. Fanelli G, Matthias Dantone. Random Forests for Real Time 3D Face Analysis [J]. International Journal of Computer Vision, 2013, 101(3):437-458. DOI:10.1007/s11263-012-0549-0.
  18. Hempel T, Abdelrahman A A, Al-Hamadi A.6D Rotation Representation for Unconstrained Head Pose Estimation [J]. arXiv e-prints, 2022. DOI:10.48550/arXiv.2202.12555.
  19. Zhang K, Zhang Z, Li Z, et al. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks [J]. IEEE Signal Processing Letters, 2016, 23(10):1499-1503. DOI:10.1109/LSP.2016.2603342.
  20. Liu H, Fang S, Zhang Z, et al. MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for Head Pose Estimation [J]. IEEE Transactions on Multimedia, 2021, PP (99): 1-1. DOI:10.1109/TMM.2021.3081873.
  21. Aghli N, Ribeiro E. A Data-Driven Approach to Improve 3D Head-Pose Estimation[C]//International Symposium on Visual Computing. Springer, Cham, 2021. DOI:10.1007/978-3-030-90439-5_43.
  22. He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition [J]. IEEE, 2016. DOI:10.1109/CVPR.2016.90.
Language: English
Page range: 62 - 68
Published on: Sep 30, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Jiaqi Lyu, Changyuan Wang, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.