Have a personal or library account? Click to login
Deep Learning Based Melanoma Diagnosis Identification Cover
By: Gaole Duan and  Changyuan Wang  
Open Access
|Aug 2023

References

  1. National Cancer Institute, PDQ Melanoma Treatment. Bethesda, MD, USA. (Nov. 4, 2019). PDQ Adult Treatment Editorial Board.Accessed: Dec. 9, 2019.
  2. Cancer Statistics Center. (2019). American Cancer Society.
  3. M. E. Celebi, H. A. Kingravi, B. Uddin, H. Iyatomi, Y. A. Aslandogan, W. V. Stoecker, and R. H. Moss, “Amethodological approach to the classification of dermoscopy images,” Computerized Med. Imag. Graph., vol. 31, no. 6, pp. 362–373, Sep. 2007.
  4. G. Capdehourat, A. Corez, A. Bazzano, R. Alonso, and P. Musé, “Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions,” Pattern Recognit. Lett., vol. 32, no. 16, pp. 2187–2196, Dec. 2011.
  5. M. E. Celebi, H. Iyatomi, W. V. Stoecker, R. H. Moss, H. S. Rabinovitz, G. Argenziano, and H. P. Soyer, “Automatic detection of blue-white veiland related structures in dermoscopy images,” Computerized Med. Imag.Graph., vol. 32, no. 8, pp. 670–677, Dec. 2008.
  6. Q. Abbas, M. Celebi, C. Serrano, I. F. N. García, and G. Ma, “Pattern classification of dermoscopy images: A perceptually uniform model,” Pattern Recognit., vol. 46, no. 1, pp. 86–97, Jan. 2013.
  7. Bi, L, J Kim, E Ahn, A Kumar, M Fulham, D Feng Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks. IEEE Trans Biomed Eng, 2017. PP(9): p. 1–1.
  8. Bi, J. Kim, E. Ahn, D. Feng, and M. Fulham, “Automatic melanomadetection via multi-scale lesion-biased representation and joint reverseclassification,” in Proc. IEEE 13th Int. Symp. Biomed. Imag. (ISBI), Apr. 2016, pp. 1055–1058.
  9. Hasan, M.K, L Dahal, PN Samarakoon, FI Tushar, RM Marly. DSNet: “Automatic dermoscopic skin lesionsegmentation”. Pergamon, 2020. DOI:10.1016/J.COMPBIOMED.2020.103738.
  10. Revathi and A. Chithra, “A review on segmentation techniques in skin lesion images,” Int. Res. J. Engg Tech., vol. 2, no. 9, 2015.
  11. Simonyan, K., and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” Computer Science (2014).
  12. Codella, Ncf, Gutman D, Celebi, M.E, Helba, B, Marchetti, Dusza, S. W, Kalloo. A, Liopyris, K, Mishra, N, Kittler, H. Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by the International Skin Imaging Collaboration (ISIC). 2017.
  13. Hinton, G.E., Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of feature detectors. 2012. p. págs. 212–223.
  14. Version, P., Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®) - National Library of Medicine PubMed Health. National CancerInstitute, 2014.
Language: English
Page range: 20 - 26
Published on: Aug 16, 2023
Published by: Xi’an Technological University
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Gaole Duan, Changyuan Wang, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.