References
- E. Zhou, Z. Cao, and Q. Yin, “Naive-Deep Face Recognition: Touching the Limit of LFW Benchmark or Not?,” Jan. 2015, Accessed: Nov. 11, 2022. [Online]. Available: http://arxiv.org/abs/1501.04690.
- M. Iqbal, M. S. I. Sameem, N. Naqvi, S. Kanwal, and Z. Ye, “A deep learning approach for face recognition based on angularly discriminative features,” Pattern Recognition Letters, vol. 128, pp. 414–419, 2019, doi: 10.1016/j.patrec.2019.10.002.
- S. Balaban, “Deep learning and face recognition: the state of the art,” in Biometric and Surveillance Technology for Human and Activity Identification XII, 2015, vol. 9457, p. 94570B, doi: 10.1117/12.2181526.
- Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification-verification,” in Advances in Neural Information Processing Systems, 2014, vol. 3, no. January, pp. 1988–1996, Accessed: Nov. 11, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2014/hash/e5e63da79fcd2bebbd7cb8bf1c1d0274-Abstract.html.
- P. R. Chowdhury, A. S. Wadhwa, and N. Tyagi, “Brain Inspired Face Recognition : A Computational Framework,” pp. 1–26, May 2021, Accessed: Nov. 11, 2022. [Online]. Available: http://arxiv.org/abs/2105.07237.
- S. Mao, D. Rajan, and L. T. Chia, “Deep residual pooling network for texture recognition,” Pattern Recognition, vol. 112, 2021, doi: 10.1016/j.patcog.2021.107817.
- D. Franco, N. Navarin, M. Donini, D. Anguita, and L. Oneto, “Deep fair models for complex data: Graphs labeling and explainable face recognition,” Neurocomputing, vol. 470, pp. 318–334, 2022, doi: 10.1016/j.neucom.2021.05.109.
- Y. Kortli, M. Jridi, A. Al Falou, and M. Atri, “Face recognition systems: A survey,” Sensors (Switzerland), vol. 20, no. 2. 2020, doi: 10.3390/s20020342.
- N. Liu et al., “Super Wide Regression Network for Unsupervised Cross-Database Facial Expression Recognition,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2018, vol. 2018-April, pp. 1897–1901, doi: 10.1109/ICASSP.2018.8461322.
- G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,” hal.inria.fr. 2007, Accessed: Nov. 11, 2022. [Online]. Available: https://hal.inria.fr/inria-00321923/.
- K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,” IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016, doi: 10.1109/LSP.2016.2603342.
- Q. Wang, P. Zhang, H. Xiong, and J. Zhao, “Face.evoLVe: A cross-platform library for high-performance face analytics,” Neurocomputing, vol. 494, pp. 443–445, Jul. 2022, doi: 10.1016/j.neucom.2022.04.118.
- F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015, vol. 07-12-June, pp. 815–823, doi: 10.1109/CVPR.2015.7298682.
- C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” in 31st AAAI Conference on Artificial Intelligence, AAAI 2017, 2017, pp. 4278–4284, doi: 10.1609/aaai.v31i1.11231.