References
- W. Wang, Y. Ji, X. Lin, “A novel fusion-based ship detection method from Pol-SAR images,” Sensors, vol. 15, pp. 25072–25089, Sep 2015.
- H.-L. Wang, M. Zhu, C.-B. Lin and D.-B. Chen, “Ship detection in optical remote sensing image based on visual saliency and AdaBoost classifier,” Optoelectronics Letters, vol. 13, no. 2, pp. 151–155, 2017.
- M. Kang, X. Leng, Z. Lin, K, Ji, “A modified faster RCNN based on CFAR algorithm for SAR ship detection,” Proc. Int. Workshop Remote Sens. Intell. Process., pp. 1–4, May 2017.
- Yao. Y, Jiang. Z, Zhang. H, Zhao. D, Cai. B, “Ship detection in optical remote sensing images based on deep convolutional neural networks,” J. Appl. Remote Sense, Nov 2017.
- C. Schwegmann, W. Kleynhans, B. Salmon, “Synthetic aperture radar ship detection using Haar-Like features,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 2, pp. 154–158, Feb. 2017.
- Y. LeCun, Y. Bengio, G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015.
- R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proc. IEEE Conf. Comput. Vis. Pattern Recog, pp. 580–587, 2014.
- R. Girshick, “Fast R-CNN,” Proc. IEEE Conf. Comput. Vis. (ICCV), pp. 1440–1448, Jun. 2015.
- S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified real-time object detection,” Proc. IEEE Conf. Comput. Vis. Pattern Recogn., pp. 779–788, 2016.
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, “SSD: Single shot multibox detector,” Proc. Eur. Conf. Comput. Vis., pp. 21–37, 2016.
- Chen Liang, Wang Zhiru, Han Zhong, et al, “Ship Target Detection and recognition method based on visible remote sensing image,” Science & Technology Review, pp.77–85, 2017.
- F. Bousetouane, B. Morris, “Off-the-shelf cnn features for fine-grained classification of vessels in a maritime environment,” Advances in Visual Computing, pp. 379–388, 2015.
- Shi Danrong, “Ship detection of SAR image based on deep learning,” Xidian University, 2015.
- Wang Bing, “Research on ship detection Based on deep learning,” Xiamen University,2017.
- E. J. McCartney, “Optics of the Atmosphere: Scattering by molecules and particles,” John Wiley and Sons, 1975.
- K. He, J. Sun, X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.
- N. Ketkar, “Convolutional neural networks in Deep Learning with Python,” Springer, pp. 61–76, 2017.
- P. Kim, “Convolutional neural network in MATLAB Deep Learning,” Springer, pp.121–147, 2017.
- E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez, “Fully convolutional neural networks for remote sensing image classification,” Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), pp. 5071–5074, Jul. 2016.
- M.A. Rafique, W. Pedrycz, M. Jeon, “Vehicle license plate detection using region-based convolutional neural networks,” Soft Comput., pp. 1–2, 2017.
- M. D. Zeiler, R. Fergus, “Visualizing and understanding convolutional networks,” European conference on computer vision, pp. 818–833, 2014.
- A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Proc. 25th Int. Conf. Neural Inf. Process. Syst., pp. 1097–1105, 2013.
- J. Hosang, M. Omran, R. Benenson, B. Schiele, “Taking a deeper look at pedestrians,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4073–4082, 2015.
- C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1–9, 2015.
- Z. Zhong, L. Jin, Z. Xie, “High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps,” Proc. 13th Int. Conf. Document Anal. Recognit., pp. 846–850, 2015.
- A. Vedaldi, K. Lenc, “MatConvNet: Convolutional neural networks for MATLAB,” Proc. 23rd Annu. ACM Conf. Multimedia Conf., pp. 689–692, 2015.
- T. Sercu, C. Puhrsch, B. Kingsbury, Y. LeCun, “Very deep multilingual convolutional neural networks for LVCSR,” Proc. IEEE Int. Conf. Acoust. Speech Signal Process, pp. 4955–4959, Mar. 2016.
- K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, pp. 770–778, 2016.
- J. B. Zhang, Y. Zheng, D. K. Qi, “Deep spatio-temporal residual networks for citywide crowd flows prediction,” Proc. 31st AAAI Conf. Artif. Intell., pp. 1655–1661, 2016.