Have a personal or library account? Click to login
Fine-grained Recognition of Ships Under Complex Sea Conditions Cover
By: Jiaojiao Ma,  Jun Yu,  Haoqi Yang,  Hong Jiang and  Wei Li  
Open Access
|May 2023

References

  1. W. Wang, Y. Ji, X. Lin, “A novel fusion-based ship detection method from Pol-SAR images,” Sensors, vol. 15, pp. 25072–25089, Sep 2015.
  2. H.-L. Wang, M. Zhu, C.-B. Lin and D.-B. Chen, “Ship detection in optical remote sensing image based on visual saliency and AdaBoost classifier,” Optoelectronics Letters, vol. 13, no. 2, pp. 151–155, 2017.
  3. M. Kang, X. Leng, Z. Lin, K, Ji, “A modified faster RCNN based on CFAR algorithm for SAR ship detection,” Proc. Int. Workshop Remote Sens. Intell. Process., pp. 1–4, May 2017.
  4. Yao. Y, Jiang. Z, Zhang. H, Zhao. D, Cai. B, “Ship detection in optical remote sensing images based on deep convolutional neural networks,” J. Appl. Remote Sense, Nov 2017.
  5. C. Schwegmann, W. Kleynhans, B. Salmon, “Synthetic aperture radar ship detection using Haar-Like features,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 2, pp. 154–158, Feb. 2017.
  6. Y. LeCun, Y. Bengio, G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015.
  7. R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proc. IEEE Conf. Comput. Vis. Pattern Recog, pp. 580–587, 2014.
  8. R. Girshick, “Fast R-CNN,” Proc. IEEE Conf. Comput. Vis. (ICCV), pp. 1440–1448, Jun. 2015.
  9. S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.
  10. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified real-time object detection,” Proc. IEEE Conf. Comput. Vis. Pattern Recogn., pp. 779–788, 2016.
  11. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, “SSD: Single shot multibox detector,” Proc. Eur. Conf. Comput. Vis., pp. 21–37, 2016.
  12. Chen Liang, Wang Zhiru, Han Zhong, et al, “Ship Target Detection and recognition method based on visible remote sensing image,” Science & Technology Review, pp.77–85, 2017.
  13. F. Bousetouane, B. Morris, “Off-the-shelf cnn features for fine-grained classification of vessels in a maritime environment,” Advances in Visual Computing, pp. 379–388, 2015.
  14. Shi Danrong, “Ship detection of SAR image based on deep learning,” Xidian University, 2015.
  15. Wang Bing, “Research on ship detection Based on deep learning,” Xiamen University,2017.
  16. E. J. McCartney, “Optics of the Atmosphere: Scattering by molecules and particles,” John Wiley and Sons, 1975.
  17. K. He, J. Sun, X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.
  18. N. Ketkar, “Convolutional neural networks in Deep Learning with Python,” Springer, pp. 61–76, 2017.
  19. P. Kim, “Convolutional neural network in MATLAB Deep Learning,” Springer, pp.121–147, 2017.
  20. E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez, “Fully convolutional neural networks for remote sensing image classification,” Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), pp. 5071–5074, Jul. 2016.
  21. M.A. Rafique, W. Pedrycz, M. Jeon, “Vehicle license plate detection using region-based convolutional neural networks,” Soft Comput., pp. 1–2, 2017.
  22. M. D. Zeiler, R. Fergus, “Visualizing and understanding convolutional networks,” European conference on computer vision, pp. 818–833, 2014.
  23. A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Proc. 25th Int. Conf. Neural Inf. Process. Syst., pp. 1097–1105, 2013.
  24. J. Hosang, M. Omran, R. Benenson, B. Schiele, “Taking a deeper look at pedestrians,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4073–4082, 2015.
  25. C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1–9, 2015.
  26. Z. Zhong, L. Jin, Z. Xie, “High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps,” Proc. 13th Int. Conf. Document Anal. Recognit., pp. 846–850, 2015.
  27. A. Vedaldi, K. Lenc, “MatConvNet: Convolutional neural networks for MATLAB,” Proc. 23rd Annu. ACM Conf. Multimedia Conf., pp. 689–692, 2015.
  28. T. Sercu, C. Puhrsch, B. Kingsbury, Y. LeCun, “Very deep multilingual convolutional neural networks for LVCSR,” Proc. IEEE Int. Conf. Acoust. Speech Signal Process, pp. 4955–4959, Mar. 2016.
  29. K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, pp. 770–778, 2016.
  30. J. B. Zhang, Y. Zheng, D. K. Qi, “Deep spatio-temporal residual networks for citywide crowd flows prediction,” Proc. 31st AAAI Conf. Artif. Intell., pp. 1655–1661, 2016.
Language: English
Page range: 39 - 46
Published on: May 26, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Jiaojiao Ma, Jun Yu, Haoqi Yang, Hong Jiang, Wei Li, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.