Have a personal or library account? Click to login
Efficiency of SVM classifier with Word2Vec and Doc2Vec models Cover
Open Access
|Feb 2020

References

  1. Bhatt, H. S., Sinha, M., & Roy, S. (2016). Cross-domain text classification with multiple domains and disparate label sets. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, (Volume 1: Long Papers) (Vol. 1, pp. 1641-1650).
  2. Boujelbene, S. Z., Mezghani, D. A., & Ellouze, N. (2010). Improving SVM by modifying kernel functions for speaker identification task. International Journal of Digital Content Technology and its Applications, 4(6), 100-105.10.4156/jdcta.vol4.issue6.12
  3. Chen, Y. N., Hakkani-Tür, D., & He, X. (2015). Detecting actionable items in meetings by convolutional deep structured semantic models. 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU) (pp. 375-382). IEEE.10.1109/ASRU.2015.7404819
  4. Colas, F., & Brazdil, P. (2006). Comparison of SVM and some older classification algorithms in text classification tasks. IFIP International Conference on Artificial Intelligence in Theory and Practice. 127, pp. 169-178. Boston: Springer.10.1007/978-0-387-34747-9_18
  5. Hmeidi, I., Hawashin, B., & El-Qawasmeh, E. (2008). Performance of KNN and SVM classifiers on full word Arabic articles. Advanced Engineering Informatics, 22(1), 106-111.10.1016/j.aei.2007.12.001
  6. Jivani, A. G. (2011). A comparative study of stemming algorithms. Int. J. Comp. Tech. Appl, 2(6), 1930-1938.
  7. Lau, J. H., & Baldwin, T. (2016). An empirical evaluation of doc2vec with practical insights into document embedding. arXiv preprint arXiv:1607.05368.
  8. Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support vector machines and word2vec for text classification with semantic features. 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp. 136-140). Beijing: IEEE.
  9. Manning, C. D., Raghavan, P., & Schütze, H. (2009). An Introduction to Information Retrieval. Cambridge, England: Cambridge University Press.
  10. Mikolov, T., Sutskever, I., Chen, S., Coraddo, G. S., & Dean, J. (2013). Efficient estimation of word representations in vector space. Proceedings of Workshop. Scottsdale, USA.
  11. Porter, M. (1980). An algorithm for suffix stripping. Programm, 4(3), 130-137.10.1108/eb046814
  12. Quoc, L., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents. International conference on machine learning, (pp. 1188-1196).
  13. Rong, X. (2016). word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.
  14. Şahin, G. (2017). Turkish document classification based on Word2Vec and SVM classifier. 2017 25th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). Ankara: IEEE.
  15. Smits, G. F., & Jordaan, E. M. (2002). Improved SVM regression using mixtures of kernels. Proceedings of the 2002 International Joint Conference on Neural Networks IJCNN’02 (Cat. No. 02CH37290). 3, pp. 2785-2790. Honolulu: IEEE.10.1109/IJCNN.2002.1007589
  16. Trive, S. K., & Dey, S. (2013). Effect of Various Kernels and Feature Selection Methods. International Journal of Computer Applications, 66(21).
  17. Yun-tao, Z., Ling, G., & Yong-cheng, W. (2005). An improved TF-IDF approach for text classification. Journal of Zhejiang University-Science A, 6(1), 49-55.10.1631/jzus.2005.A0049
Language: English
Page range: 496 - 503
Published on: Feb 13, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Maria Mihaela Truşcă, published by Grupul de Econometrie Aplicata
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.