Have a personal or library account? Click to login
Residue dynamics of fluopyram and trifloxystrobin in grapes: Consumer safety insights from Saudi agriculture Cover

Residue dynamics of fluopyram and trifloxystrobin in grapes: Consumer safety insights from Saudi agriculture

Open Access
|Jan 2026

References

  1. EFSA, Brancato, A., Brocca, D., Ferreira, L., Greco, L., Jarrah, S., Leuschner, R., Medina, P., Miron, I. and Nougadere, A. 2018. Use of EFSA pesticide residue intake model (EFSA PRIMo revision 3). EFSA Journal. 16 (1): e05147.
  2. Abad-Fuentes, A., Ceballos-Alcantarilla, E., Mercader, J. V, Agulló, C., Abad-Somovilla, A. and Esteve-Turrillas, F.A. 2015. Determination of succinate -dehydrogenase - inhibitor fungicide residues in fruits and vegetables by liquid chromatography–tandem mass spectrometry. Analytical and bioanalytical chemistry, 407: 4207–4211.
  3. Abdallah, O., Soliman, H., El-Hefny, D., Abd El-Hamid, R. and Malhat, F. 2023. Dissipation profile of sulfoxaflor on squash under Egyptian field conditions: A prelude to risk assessment. International Journal of Environmental Analytical Chemistry, 103 (16): 3820–3834.
  4. Bayer Crop Science. Luna Sensation® (fungicide): Product information. Crop Bayer Australia. Available online: https://www.crop.bayer.com.au/products/fungicides/luna-sensation#tab-2 (accessed on 1 January 2026).
  5. Banerjee, K., Ligon, A.P. and Spiteller, M. 2006. Environmental fate of trifloxystrobin in soils of different geographical origins and photolytic degradation in water. Journal of Agricultural and Food Chemistry, 54 (25): 9479–9487.
  6. Bartlett, D.W., Clough, J.M., Godwin, J.R., Hall, A.A., Hamer, M. and Parr‐Dobrzanski, B. 2002. The strobilurin fungicides. Pest Management Science: formerly Pesticide Science, 58 (7): 649–662.
  7. Conde, C., Silva, P., Fontes, N., Dias, A.C.P., Tavares, R.M., Sousa, M.J., Agasse, A., Delrot, S. and Gerós, H. 2007. Biochemical changes throughout grape berry development and fruit and wine quality. Food, 1 (1): 1–22.
  8. Cui, K., Guan, S., Liang, J., Fang, L., Ding, R., Wang, J., Li, T., Dong, Z., Wu, X. and Zheng, Y. 2023. Dissipation, metabolism, accumulation, processing and risk assessment of fluopyram and trifloxystrobin in cucumbers and cowpeas from cultivation to consumption. Foods, 12 (10): 2082.
  9. Dong, B. and Hu, J. 2014. Dissipation and residue determination of fluopyram and tebuconazole residues in watermelon and soil by GC-MS. International Journal of Environmental Analytical Chemistry, 94 (5): 493–505.
  10. EFSA (European Food Safety Authority), et al. 2023. Modification of the existing maximum residue levels and setting of import tolerances for fluopyram in various crops. EFSA Journal 21.6: e08036. https://doi.org/10.2903/j.efsa.2023.8036.
  11. EFSA (European Food Safety Authority), et al. 2025. Modification of the existing maximum residue levels and setting of import tolerances for trifloxystrobin in various crops. EFSA Journal 23: e09387. https://doi.org/10.2903/j.efsa.2025.9387.
  12. European Commission. 2021. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. SANTE/11312/2021. Directorate-General for Health and Food Safety, European Commission.
  13. Fantke, P., Friedrich, R. and Jolliet, O. 2012. Health impact and damage cost assessment of pesticides in Europe. Environment International, 49: 9–17.
  14. Ferrer, C., Lozano, A., Agüera, A., Girón, A.J. and Fernández-Alba, A.R. 2011. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of Chromatography A, 1218 (42): 7634–7639.
  15. Heshmati, A., Nili-Ahmadabadi, A., Rahimi, A., Vahidinia, A. and Taheri, M. 2020. Dissipation behavior and risk assessment of fungicide and insecticide residues in grape under open-field, storage and washing conditions. Journal of Cleaner Production, 270: 122287.
  16. Hingmire, S., Oulkar, D.P., Utture, S.C., Shabeer, T.P.A. and Banerjee, K. 2015. Residue analysis of fipronil and difenoconazole in okra by liquid chromatography tandem mass spectrometry and their food safety evaluation. Food Chemistry, 176: 145–151.
  17. Hoskins, W.M., 1961. Mathematical treatment of the rate of loss of pesticide residues. FAO/WHO, 2014. IEDI calculations for FAO/WHO acute dietary intake assessment, 2014.
  18. Kandel, Y.R., McCarville, M.T., Adee, E.A., Bond, J.P., Chilvers, M.I., Conley, S.P., Giesler, L.J., Kelly, H.M., Malvick, D.K. and Mathew, F.M. 2018. Benefits and profitability of fluopyram-amended seed treatments for suppressing sudden death syndrome and protecting soybean yield: A meta-analysis. Plant Disease, 102 (6): 1093–1100.
  19. Malhat, F. and Abdallah, O. 2019. Residue distribution and risk assessment of two macrocyclic lactone insecticides in green onion using micro-liquid-liquid extraction (MLLE) technique coupled with liquid chromatography tandem mass spectrometry. Environmental Monitoring and Assessment, 191 (9): 584.
  20. Mandal, K., Singh, R., Sharma, S. and Kataria, D. 2023. Dissipation and kinetic studies of fluopyram and trifloxystrobin in chilli. Journal of Food Composition and Analysis, 115: 105008.
  21. Mohapatra, S. 2015. Comparison of the residue persistence of trifloxystrobin (25%)+ tebuconazole (50%) on gherkin and soil at two locations. Environmental Monitoring and Assessment, 187: 1–13.
  22. Mohapatra, S., Ahuja, A.K., Deepa, M., Jagadish, G.K., Prakash, G.S. and Kumar, S. 2010. Behaviour of trifloxystrobin and tebuconazole on grapes under semi‐arid tropical climatic conditions. Pest Management Science, 66 (8): 910–915.
  23. Paramasivam, M., Deepa, M., Selvi, C. and Chandrasekaran, S. 2017. Dissipation kinetics and safety evaluation of tebuconazole and trifloxystrobin in tea under tropical field conditions. Food Additives and Contaminants: Part A, 34 (12): 2155–2163.
  24. Parmar, K.D., Litoriya, N.S., Patel, J.H., Shah, P.G., Chawla, S. and Kalasariya, R.L. 2023. Dissipation kinetics of fluopyram and trifloxystrobin following application of combination product in/on chilli and its consumer risk assessment. Pesticide Research Journal, 35 (1): 8–16.
  25. Patel, B. V, Chawla, S., Gor, H., Upadhyay, P., Parmar, K.D., Patel, A.R. and Shah, P.G. 2016. Residue decline and risk assessment of fluopyram+ tebuconazole (400SC) in/on onion (Allium cepa). Environmental Science and Pollution Research, 23: 20871–20881.
  26. Patil, C.S., Vemuri, S., Deore, H.V., Saindane, Y.S., Kavitha, K. and Anitha, V. 2018. Dissipation of fluopyram and tebuconazole residues in/on pomegranate and soil in Western Maharashtra. Open Access Library Journal, 5 (11): 1–11.
  27. Ren, S., Zhang, Y., Zhang, S., Lu, H., Liang, X., Wang, L., Wang, M. and Zhang, C. 2023. Residue behavior and dietary risk assessment of fluopyram in cowpea and determination in nine foodstuffs. Frontiers in Environmental Science, 11: 1105524.
  28. Sahoo, S.K., Jyot, G., Battu, R.S. and Singh, B. 2012. Dissipation kinetics of trifloxystrobin and tebuconazole on chili and soil. Bulletin of Environmental Contamination and Toxicology, 88: 368–371.
  29. Sharma, K.K., Tripathy, V., Rao, C.S., Bhushan, V.S., Reddy, K.N., Jyot, G., Sahoo, S.K., Singh, B., Mandal, K. and Banerjee, H. 2019. Persistence, dissipation, and risk assessment of a combination formulation of trifloxystrobin and tebuconazole fungicides in/on tomato. Regulatory Toxicology and Pharmacology, 108: 104471.
  30. Sharma, N., Mandal, K. and Sharma, S. 2022. Dissipation and risk assessment of fluopyram and trifloxystrobin on onion by GC–MS/MS. Environmental Science and Pollution Research, 29 (53): 80612–80623.
  31. Taylor, P.J. 2005. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spec-trometry. Clinical Biochemistry, 38 (4): 328–334. Wei, P., Liu, Y., Li, W., Qian, Y., Nie, Y., Kim, D. and
  32. Wang, M. 2016. Metabolic and dynamic profiling for risk assessment of fluopyram, a typical phenylamide fungicide widely applied in vegetable ecosystem. Scientific Reports, 6 (1): 33898.
  33. Zengin, E. and Karaca, İ. 2018. Determination of pesticide residues in grapes from vineyards implemented good agricultural practice in Uşak. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22 (3): 1121–1124.
  34. Zhou, D.-D., Li, J., Xiong, R.-G., Saimaiti, A., Huang, S.-Y., Wu, S.-X., Yang, Z.-J., Shang, A., Zhao, C.-N. and Gan, R.-Y. 2022. Bioactive compounds, health benefits and food applications of grape. Foods, 11 (18): 2755.
  35. Ziegler, H., Benet-Buchholz, J., Etzel, W. and Gayer, G. 2003. Trifloxystrobin-a new strobilurin fungicide with an outstanding biological activity. Pflanzenschutz-Nachrichten Bayer, 56(2): 213-230.
DOI: https://doi.org/10.2478/hppj-2026-0005 | Journal eISSN: 2732-656X | Journal ISSN: 1791-3691
Language: English
Page range: 33 - 47
Submitted on: May 28, 2025
|
Accepted on: Jan 9, 2026
|
Published on: Jan 20, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 O.I. Abdallah, F.S. Almulhim, A.F. Omar, K.A. Al-Jamhan, S.S. Alhewairini, published by Benaki Phytopathological Institute
This work is licensed under the Creative Commons Attribution 4.0 License.