Have a personal or library account? Click to login
Balancing Nutrient Content and Nitrate Levels in Space Agriculture: Investigating LED Light and CO2 Effects on Space-Grown Leafy Green Vegetables Cover

Balancing Nutrient Content and Nitrate Levels in Space Agriculture: Investigating LED Light and CO2 Effects on Space-Grown Leafy Green Vegetables

Open Access
|Nov 2025

References

  1. Avercheva OV, Berkovich YV, Konovalova IO, Radchenko SG, Lapach SN, Bassarskaya EM, Kochetova GV, Zhigalova TV, Yakovleva OS, Tarakanov, IG (2016) Optimizing LED lighting for space plant growth unit: Joint effects of photon flux density, red to white ratios and intermittent light pulses. Life Sciences in Space Research 11: 29–42. doi:10.1016/j.lssr.2016.12.001
  2. Bloom AJ, Burger M (2010) Carbon dioxide inhibits nitrate assimilation in wheat and Arabidopsis. Science 328 (5980): 899–903. doi:10.1126/science.1186440
  3. Butler S (2014) How space food has evolved—and improved. History. https://www.history.com/articles/cosmic-cuisine-the-evolution-of-space-foodhistory.com+3
  4. Cantwell M, Elliott C (2017) Nitrates, nitrites, and nitrosamines from processed meat intake and colorectal cancer risk. Journal of Clinical Nutrition and Dietetics 3(4): 27. doi:10.4172/2472-1921.100062
  5. Casaburri AA, Gardner, CA (1999) Space food and nutrition: An educator's guide with activities in science and mathematics. National Aeronautics and Space Administration. https://eric.ed.gov/?id=ED448036
  6. Chen X, Yang J, Dong D, Lv H, Zhao B, Xue Y, Shang P (2019) Iron overload as a high risk factor for microgravity-induced bone loss. Acta Astronautica 164: 407–414. doi: 10.1016/j.actaastro.2019.07.034
  7. Cooper M, Perchonok M, Douglas GL (2017) Initial assessment of the nutritional quality of the space food system over three years of ambient storage. npj Microgravity 3: 17. doi:10.1038/s41526-017-0022-z
  8. Corliss J (2022) Nitrates in food and medicine: What is the story? Harvard Health Publishing, February 1. https://www.health.harvard.edu/heart-health/nitrates-in-food-and-medicine-whats-the-story
  9. Darby EW, Armstrong SP, Walters KJ (2024) Bioregenerative dietary supplementation in space: Brassica rapa var. nipposinica and other Brassica cultivars. Life Science Space Research 42: 140–147. doi:10.1016/j.lssr.2023.12.002
  10. Ding Z, Johanningsmeier SD, Price R, Reynolds R, Truong V-D, Payton SC, Breidt F (2018) Evolution of nitrate and nitrite content in pickled fruit and vegetable products. Food Control 90: 304–311. doi: 10.1016/j.foodcont.2018.03.005
  11. Dowden A (2019) The truth about the nitrates in your food. BBC Future. https://www.bbc.com/future/article/20190311-what-are-nitrates-in-food-side-effects
  12. Gómez C, Jiménez, J (2020) Effect of end-of-production high-energy radiation on the nutritional quality of indoor-grown red-leaf lettuce. HortScience 55(7): 1055–1060. doi:10.21273/HORTSCI15030-20
  13. Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: The physiologic context for potential health benefits. The American Journal of Clinical Nutrition 90(1): 1–10. doi:10.3945/ajcn.2008.27131
  14. Fritsche R, Haveman N, Massa GD, Mickens M, Smith T, Wheeler RM, Link B, Spencer L (2024) Space crop considerations for human exploration. NASA Tech. Reports NASA/TM-20250001897. https://ntrs.nasa.gov/citations/20250001897
  15. Fairchild Tropical Botanic Garden (2022) Complete seed list growing beyond Earth 2015–2022. Fairchild Tropical Botanic Garden. https://drive.google.com/file/d/1zt33v_HU_CAbK8NWbp_HWf8GYstbc5Yp/view?usp=sharing.
  16. Igarashi M, Yi Y, Yano K (2021) Revisiting why plants become nitrogen deficient under elevated CO2: Importance to meet nitrogen demand regardless of the Fed-form. Frontiers in Plant Science 12: 726186. doi:10.3389/fpls.2021.726186
  17. Johnson CM, Boles HO, Spencer LE, Poulet L, Romeyn M, Bunchek JM, Fritsche R, Massa GD, O'Rourke A, Wheeler RM (2021) Supplemental food production with plants: A review of NASA research. Frontiers in Astronomy and Space Sciences 8: 734343. doi:10.3389/fspas.2021.734343
  18. Karwowska M, Kononiuk A (2020) Nitrates/nitrites in food—risk for nitrosative stress and benefits. Antioxidants 9(3): 241. doi:10.3390/antiox9030241
  19. Khodadad CLM, Hummerick ME, Spencer LE, Dixit AR, Richards JT, Romeyn MW, Smith TM, Wheeler, RM, Massa GD (2020) Microbiological and nutritional analysis of lettuce grown on the International Space Station. Frontiers in Plant Science 11. 505516 doi: 10.3389/fpls.2020.00199
  20. Kloeris, V (2013) Shuttle and ISS food systems management. In Proceedings of the “Food for Space” Conference, Salsomaggiore Terme (Parma), Italy. October 2000. NASA Tech. Report JSC-CN-6544. https://ntrs.nasa.gov/citations/20110000670
  21. Luetic S, Knezovic Z, Jurcic K, Majic Z, Tripkovic K, Sutlovic D (2023) Leafy vegetable nitrite and nitrate content: Potential health effects. Foods 12(8): 1655. doi:10.3390/foods12081655
  22. Massa GD, Newsham G, Hummerick ME, Caro JL, Stutte GW, Morrow RC, Wheeler RM (2013a) Preliminary species and media selection for the Veggie space hardware. Gravitational and Space Research 1(1): 95–106. doi:10.2478/gsr-2013-0008
  23. Massa GD, Simpson M, Wheeler RM, Newsham G, Stutte GW (2013b) Plant atrium system for food production in NASA's Deep Space Habitat tests. Proceedings of the American Institute of Aeronautics and Astronautics (AIAA), Paper No. 2013-3359. NASA Tech. Report KSC-2013-157. https://ntrs.nasa.gov/citations/20130014500
  24. Massa GD, Wheeler RM, Stutte GW, Richards JT, Spencer LE, Hummerick ME, Douglas GL, Sirmons T (2015) Selection of leafy green vegetable varieties for a pick-and-eat diet supplement on ISS. Presented at the 45th International Conference on Environmental Systems, 12–16 July 2015, Bellevue, Washington. NASA Tech. Report ICES-2015-252, KSC-E-DAA-TN23548. https://ntrs.nasa.gov/citations/20150018899
  25. Massa GD, Wheeler RM, Morrow RC, Levine HG (2016) Growth chambers on the International Space Station for large plants. Acta Horticulturae 1134: 215–222. NASA Tech. Report KSC-E-DAA-TN29529. https://ntrs.nasa.gov/citations/20160006558
  26. Massa GD, Newsham G, Hummerick, ME, Morrow, RC, Wheeler, RM (2017) Plant pillow preparation for the Veggie plant growth system on the International Space Station. Gravitational and Space Research 5(1): 24–34. doi: 10.2478/gsr-2017-0002
  27. Mickens MA, Torralba M, Rodríguez-Morrison V, Gómez C (2018) A strategic approach for investigating light recipes for ‘Outredgeous’ red romaine lettuce using white and monochromatic LEDs. Life Sciences in Space Research 19: 53–62. doi:10.1016/j.lssr.2018.09.003
  28. Mickens MA, Torralba M, Robinson SA, Spencer LE, Romeyn MW, Massa GD, Wheeler, RM (2019) Growth of red pak choi under red and blue, supplemented white, and artificial sunlight provided by LEDs, Scientia Horticulturae 245(9): 200–209. doi:10.1016/j.scienta.2018.10.023
  29. Meyers A (2023) Introduction to space radiation [webinar]. Growing Beyond Earth (GBE): Chat with scientist series, September 2023.
  30. NASA (2006) Space food (NASA Facts FS-2006-11-029-JSC). National Aeronautics and Space Administration. https://www.nasa.gov/wp-content/uploads/2015/05/167750main_fs_spacefood508c.pdf
  31. NASA Human Research Program. (2024). Risk of crew adverse health events due to altered immune response (IMMU). Human Research Roadmap. https://humanresearchroadmap.nasa.gov/Risks/risk.aspx?i=85
  32. Romeyn MW, Spencer LE, Massa, GD, Wheeler, RM (2019) Crop readiness level (CRL): A scale to track progression of crop testing for space. 49th International Conference on Environmental Systems, July 2019, Boston, MA. NASA Tech. Report KSC-E-DAA-TN63641. https://ntrs.nasa.gov/citations/20190027123
  33. Smith SM, Zwart SR, Kloeris V, Heer M (eds) (2009). Nutritional biochemistry of space flight. New York: Nova Science Publishers. https://www.nasa.gov/wp-content/uploads/2023/04/nutritional-biochemistry-of-space-flight.pdf
  34. Smith SM, Zwart SR (2020) Nutritional requirements for exploration missions up to 365 days (JSC-67378 Rev 1). NASA Tech. Report JSC 67378. https://ntrs.nasa.gov/citations/20205008306
  35. Smithsonian National Air and Space Museum [n.d.] Space food, bacon bars, Apollo 11 (White). National Air and Space Museum, Smithsonian Institution. https://airandspace.si.edu/collection-objects/space-food-bacon-bars-apollo-11-white/nasm_A19860553000
  36. Stadler CR, Rapp RM, Bourland CT, Fohey MF (1989) Shuttle food-system summary, 1981–1986. NASA Tech. Report NASA-TM-100469 https://ntrs.nasa.gov/citations/19890005322
  37. Taub DR (2010) Effects of rising atmospheric concentrations of carbon dioxide on plants. Nature Education Knowledge 3(10): 21. https://www.nature.com/scitable/knowledge/library/effects-of-rising-atmospheric-concentrations-of-carbon-13254108/
  38. Tischner, R. (2006). Nitrate uptake and reduction in plants. Journal of Crop Improvement 15(2), 53–95. doi:10.1300/J411v15n02_03
  39. Yang J, Zhang G, Dong D, Shang P (2018) Effects of iron overload and oxidative damage on the musculoskeletal system in the space environment: Data from spaceflights and ground-based simulation models. International Journal of Molecular Sciences 19(9): 2608. doi:10.3390/ijms19092608
  40. Yang T, Zhang X, Tarnawski L, Peleli M, Zhuge Z, Terrando N, Harris RN, Olofsson PS, Larsson E, Persson AEG, Lundberg, JO, Weitzberg E, Carlstrom M (2017) Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox Biology 13: 320–330. doi:10.1016/j.redox.2017.06.002
  41. Wheeler RM, Drese JH, Sager JC (1991) Atmospheric leakage and condensate production in NASA's biomass production chamber. NASA Technical Paper 3038. NASA Tech. Report NASA-TM-103819. https://ntrs.nasa.gov/citations/19910014405
  42. Wheeler RM, Sager, JC, Prince RP, Knott WM, Mackowiak, CL (2014). NASA's controlled environment agriculture testing for space habitats. NASA Technical Publication KSC-E-DAA-TN18592. https://ntrs.nasa.gov/citations/20140017323
  43. Wheeler RM, Spencer LE, Bhuiyan RH, Mickens MA, Bunchek JM, van Santen E, Massa GD, Romeyn MW (2024) Effects of elevated and super-elevated carbon dioxide on salad crops for space. Journal of Plant Interactions 19(1): 2292219. doi:10.1080/17429145.2023.2292219
  44. Wu X, Douglas GL (2024a) NASA space food formulations: Rehydratable foods. NASA Tech. Report NASA/SP-20240006338. https://ntrs.nasa.gov/citations/20240006338
  45. Wu X, Douglas GL (2024b) NASA space food formulations: Thermostabilized foods. NASA Tech. Report NASA/SP-20240005962, https://ntrs.nasa.gov/citations/20240005962
  46. Vodovotz Y, Smith SM, Lane HW (2000), Food and nutrition in space: Application to human health. Nutrition 16 (7–8): 534–537. doi:10.1016/S0899-9007(00)00311-7
  47. Zhang Y, Zhang Y, Jia, J, Peng H, Qian Q, Pan, Z, Liu D (2020). Nitrite and nitrate in meat processing: Functions and alternatives. Current Research in Food Science, 6, 100470. doi:10.1016/j.crfs.2023.100470
  48. Zou T, Huang C, Wu P, Ge L, Xu Y (2020) Optimization of artificial light for spinach growth in a plant factory based on an orthogonal test. Plants 9(4): 490. doi:10.3390/plants9040490
  49. Zwart SR, Morgan JL, Smith SM (2013) Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the International Space Station. The American Journal of Clinical Nutrition 98(1): 217–223. doi:10.3945/ajcn.112.056465
Language: English
Page range: 103 - 120
Published on: Nov 18, 2025
Published by: American Society for Gravitational and Space Research
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Margaret E. Hitt, Sophie Cai, Gabriel Nix, Sanvi Patel, Lisa S. Tsay, published by American Society for Gravitational and Space Research
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.